(1/8)(x+24)=9

Simple and best practice solution for (1/8)(x+24)=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/8)(x+24)=9 equation:



(1/8)(x+24)=9
We move all terms to the left:
(1/8)(x+24)-(9)=0
Domain of the equation: 8)(x+24)!=0
x∈R
We add all the numbers together, and all the variables
(+1/8)(x+24)-9=0
We multiply parentheses ..
(+x^2+1/8*24)-9=0
We multiply all the terms by the denominator
(+x^2+1-9*8*24)=0
We get rid of parentheses
x^2+1-9*8*24=0
We add all the numbers together, and all the variables
x^2-1727=0
a = 1; b = 0; c = -1727;
Δ = b2-4ac
Δ = 02-4·1·(-1727)
Δ = 6908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6908}=\sqrt{4*1727}=\sqrt{4}*\sqrt{1727}=2\sqrt{1727}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1727}}{2*1}=\frac{0-2\sqrt{1727}}{2} =-\frac{2\sqrt{1727}}{2} =-\sqrt{1727} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1727}}{2*1}=\frac{0+2\sqrt{1727}}{2} =\frac{2\sqrt{1727}}{2} =\sqrt{1727} $

See similar equations:

| -0.5=2x-1 | | (1/8)(p+24)=9 | | 4.6p-28=3.2p-14 | | y/2-7=19 | | 0.5=2x-1 | | 10t+8=3-2t | | X+x*4+x-6=72 | | x-5/8=0 | | (x-5)/8=0 | | 2(4x-7)=8x- | | 2(x-3)/5=3x/4+3/5 | | x2+8x=0 | | 4x+3(x-7)=0 | | (-5)=6x+100 | | 5(12x+3)=4(2x-1) | | 2(4x-4)=-8-3x | | 0.8y-0.3y=6.5 | | 4.2+5.6=x | | -4w+7=-w-5-3w+9 | | 4x^+90x-27=0 | | 11/2b-41/2=11/2+3/4 | | (X/5)-(x/2)=1 | | 3x+×=32 | | 7x-8=4x-16 | | 7x-10=35-2x | | 42x^2+10x-12=7x^2-3x | | (T/5)-(t/2)=1 | | m+6/2=-2(6-4m) | | 3x+x=260 | | (m+6)/2=-2(6-4m) | | 5x^2+5x+360=0 | | 15-2=14t+5 |

Equations solver categories