(2*(-j))+(-3+j)(-0.707-0.707j)=0

Simple and best practice solution for (2*(-j))+(-3+j)(-0.707-0.707j)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2*(-j))+(-3+j)(-0.707-0.707j)=0 equation:


Simplifying
(2(-1j)) + (-3 + j)(-0.707 + -0.707j) = 0

Remove parenthesis around (-1j)
(2 * -1j) + (-3 + j)(-0.707 + -0.707j) = 0

Multiply 2 * -1
(-2j) + (-3 + j)(-0.707 + -0.707j) = 0

Multiply (-3 + j) * (-0.707 + -0.707j)
(-2j) + (-3(-0.707 + -0.707j) + j(-0.707 + -0.707j)) = 0
(-2j) + ((-0.707 * -3 + -0.707j * -3) + j(-0.707 + -0.707j)) = 0
(-2j) + ((2.121 + 2.121j) + j(-0.707 + -0.707j)) = 0
(-2j) + (2.121 + 2.121j + (-0.707 * j + -0.707j * j)) = 0
(-2j) + (2.121 + 2.121j + (-0.707j + -0.707j2)) = 0

Combine like terms: 2.121j + -0.707j = 1.414j
(-2j) + (2.121 + 1.414j + -0.707j2) = 0

Reorder the terms:
2.121 + (-2j) + 1.414j + -0.707j2 = 0

Combine like terms: (-2j) + 1.414j = -0.586j
2.121 + -0.586j + -0.707j2 = 0

Solving
2.121 + -0.586j + -0.707j2 = 0

Solving for variable 'j'.

Begin completing the square.  Divide all terms by
-0.707 the coefficient of the squared term: 

Divide each side by '-0.707'.
-3 + 0.828854314j + j2 = 0

Move the constant term to the right:

Add '3' to each side of the equation.
-3 + 0.828854314j + 3 + j2 = 0 + 3

Reorder the terms:
-3 + 3 + 0.828854314j + j2 = 0 + 3

Combine like terms: -3 + 3 = 0
0 + 0.828854314j + j2 = 0 + 3
0.828854314j + j2 = 0 + 3

Combine like terms: 0 + 3 = 3
0.828854314j + j2 = 3

The j term is 0.828854314j.  Take half its coefficient (0.414427157).
Square it (0.1717498685) and add it to both sides.

Add '0.1717498685' to each side of the equation.
0.828854314j + 0.1717498685 + j2 = 3 + 0.1717498685

Reorder the terms:
0.1717498685 + 0.828854314j + j2 = 3 + 0.1717498685

Combine like terms: 3 + 0.1717498685 = 3.1717498685
0.1717498685 + 0.828854314j + j2 = 3.1717498685

Factor a perfect square on the left side:
(j + 0.414427157)(j + 0.414427157) = 3.1717498685

Calculate the square root of the right side: 1.780940726

Break this problem into two subproblems by setting 
(j + 0.414427157) equal to 1.780940726 and -1.780940726.

Subproblem 1

j + 0.414427157 = 1.780940726 Simplifying j + 0.414427157 = 1.780940726 Reorder the terms: 0.414427157 + j = 1.780940726 Solving 0.414427157 + j = 1.780940726 Solving for variable 'j'. Move all terms containing j to the left, all other terms to the right. Add '-0.414427157' to each side of the equation. 0.414427157 + -0.414427157 + j = 1.780940726 + -0.414427157 Combine like terms: 0.414427157 + -0.414427157 = 0.000000000 0.000000000 + j = 1.780940726 + -0.414427157 j = 1.780940726 + -0.414427157 Combine like terms: 1.780940726 + -0.414427157 = 1.366513569 j = 1.366513569 Simplifying j = 1.366513569

Subproblem 2

j + 0.414427157 = -1.780940726 Simplifying j + 0.414427157 = -1.780940726 Reorder the terms: 0.414427157 + j = -1.780940726 Solving 0.414427157 + j = -1.780940726 Solving for variable 'j'. Move all terms containing j to the left, all other terms to the right. Add '-0.414427157' to each side of the equation. 0.414427157 + -0.414427157 + j = -1.780940726 + -0.414427157 Combine like terms: 0.414427157 + -0.414427157 = 0.000000000 0.000000000 + j = -1.780940726 + -0.414427157 j = -1.780940726 + -0.414427157 Combine like terms: -1.780940726 + -0.414427157 = -2.195367883 j = -2.195367883 Simplifying j = -2.195367883

Solution

The solution to the problem is based on the solutions from the subproblems. j = {1.366513569, -2.195367883}

See similar equations:

| (-2*(-j))+(-3-j)(0.707-0.707j)=0 | | 2X-5y+8=0 | | 7x+6+8=0 | | 30x-5=40 | | 3x^2+11x=20+y | | 7/45x=91/45 | | 3x^2+11=20+y | | (2x+1)day=(y-1)dx | | (-2-j)+(-3-j)(0.707-0.707j)=0 | | 2x+9=35-9x | | (2x^2)+(2y^2)=3 | | y=2xln(1+x) | | 4x-3=7+x | | -9z=6 | | Y+8y-9y=0 | | 4/x=0.25 | | 10.5-9.2m=-36.42 | | 7/5y=28/15 | | 27^(3x-4)=1/9 | | (1-j)+(1-j)(0.707-0.707j)=0 | | |x+1|+x+1=0 | | 257x+207x^3-321x^2=95 | | 900=120x^2-x^3 | | y[n]-0.5y[n-1]=0.5x[n] | | y=xsinx-x^1/2 | | 7x-40=18 | | (9x^2-6x+1)*(9x^2-12x-5)= | | (9x^2+15x-20)*(9x^2-10x+5)= | | 2(1x+3)=22 | | 2(-3-2x)=6 | | 4(-1x-6)=-16 | | 10x+.15=16.45 |

Equations solver categories