(1-j)+(1-j)(0.707-0.707j)=0

Simple and best practice solution for (1-j)+(1-j)(0.707-0.707j)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-j)+(1-j)(0.707-0.707j)=0 equation:


Simplifying
(1 + -1j) + (1 + -1j)(0.707 + -0.707j) = 0

Remove parenthesis around (1 + -1j)
1 + -1j + (1 + -1j)(0.707 + -0.707j) = 0

Multiply (1 + -1j) * (0.707 + -0.707j)
1 + -1j + (1(0.707 + -0.707j) + -1j * (0.707 + -0.707j)) = 0
1 + -1j + ((0.707 * 1 + -0.707j * 1) + -1j * (0.707 + -0.707j)) = 0
1 + -1j + ((0.707 + -0.707j) + -1j * (0.707 + -0.707j)) = 0
1 + -1j + (0.707 + -0.707j + (0.707 * -1j + -0.707j * -1j)) = 0
1 + -1j + (0.707 + -0.707j + (-0.707j + 0.707j2)) = 0

Combine like terms: -0.707j + -0.707j = -1.414j
1 + -1j + (0.707 + -1.414j + 0.707j2) = 0

Reorder the terms:
1 + 0.707 + -1j + -1.414j + 0.707j2 = 0

Combine like terms: 1 + 0.707 = 1.707
1.707 + -1j + -1.414j + 0.707j2 = 0

Combine like terms: -1j + -1.414j = -2.414j
1.707 + -2.414j + 0.707j2 = 0

Solving
1.707 + -2.414j + 0.707j2 = 0

Solving for variable 'j'.

Begin completing the square.  Divide all terms by
0.707 the coefficient of the squared term: 

Divide each side by '0.707'.
2.414427157 + -3.414427157j + j2 = 0

Move the constant term to the right:

Add '-2.414427157' to each side of the equation.
2.414427157 + -3.414427157j + -2.414427157 + j2 = 0 + -2.414427157

Reorder the terms:
2.414427157 + -2.414427157 + -3.414427157j + j2 = 0 + -2.414427157

Combine like terms: 2.414427157 + -2.414427157 = 0.000000000
0.000000000 + -3.414427157j + j2 = 0 + -2.414427157
-3.414427157j + j2 = 0 + -2.414427157

Combine like terms: 0 + -2.414427157 = -2.414427157
-3.414427157j + j2 = -2.414427157

The j term is -3.414427157j.  Take half its coefficient (-1.707213579).
Square it (2.914578204) and add it to both sides.

Add '2.914578204' to each side of the equation.
-3.414427157j + 2.914578204 + j2 = -2.414427157 + 2.914578204

Reorder the terms:
2.914578204 + -3.414427157j + j2 = -2.414427157 + 2.914578204

Combine like terms: -2.414427157 + 2.914578204 = 0.500151047
2.914578204 + -3.414427157j + j2 = 0.500151047

Factor a perfect square on the left side:
(j + -1.707213579)(j + -1.707213579) = 0.500151047

Calculate the square root of the right side: 0.707213579

Break this problem into two subproblems by setting 
(j + -1.707213579) equal to 0.707213579 and -0.707213579.

Subproblem 1

j + -1.707213579 = 0.707213579 Simplifying j + -1.707213579 = 0.707213579 Reorder the terms: -1.707213579 + j = 0.707213579 Solving -1.707213579 + j = 0.707213579 Solving for variable 'j'. Move all terms containing j to the left, all other terms to the right. Add '1.707213579' to each side of the equation. -1.707213579 + 1.707213579 + j = 0.707213579 + 1.707213579 Combine like terms: -1.707213579 + 1.707213579 = 0.000000000 0.000000000 + j = 0.707213579 + 1.707213579 j = 0.707213579 + 1.707213579 Combine like terms: 0.707213579 + 1.707213579 = 2.414427158 j = 2.414427158 Simplifying j = 2.414427158

Subproblem 2

j + -1.707213579 = -0.707213579 Simplifying j + -1.707213579 = -0.707213579 Reorder the terms: -1.707213579 + j = -0.707213579 Solving -1.707213579 + j = -0.707213579 Solving for variable 'j'. Move all terms containing j to the left, all other terms to the right. Add '1.707213579' to each side of the equation. -1.707213579 + 1.707213579 + j = -0.707213579 + 1.707213579 Combine like terms: -1.707213579 + 1.707213579 = 0.000000000 0.000000000 + j = -0.707213579 + 1.707213579 j = -0.707213579 + 1.707213579 Combine like terms: -0.707213579 + 1.707213579 = 1 j = 1 Simplifying j = 1

Solution

The solution to the problem is based on the solutions from the subproblems. j = {2.414427158, 1}

See similar equations:

| |x+1|+x+1=0 | | 257x+207x^3-321x^2=95 | | 900=120x^2-x^3 | | y[n]-0.5y[n-1]=0.5x[n] | | y=xsinx-x^1/2 | | 7x-40=18 | | (9x^2-6x+1)*(9x^2-12x-5)= | | (9x^2+15x-20)*(9x^2-10x+5)= | | 2(1x+3)=22 | | 2(-3-2x)=6 | | 4(-1x-6)=-16 | | 10x+.15=16.45 | | -6(-3x+5)=168 | | -640(x+5)=1040 | | -2(6+2x)=28 | | 5(6-3x)=15 | | 2(-4+10)=4 | | -3(1+1x)=-3 | | -3(6-6x)=-18 | | 12-9x=y | | 3(5x+7)=201 | | (3x+1)*(3x-5)= | | x^2+18x=67 | | 15x-30=10 | | ln((16x)/(3x^8-5x^4)) | | -2x+7=2x-21 | | 4x=28+8x | | x(2x+5)(2x-5)=11 | | 4x+(-8y)+(-3xy)+5x+2xy= | | 7x5/10 | | 2x+5x+6xy+3xy+(-3x)= | | 2+3+3*15=x |

Equations solver categories