(13.7)(10.4)=(1.47)(p2)

Simple and best practice solution for (13.7)(10.4)=(1.47)(p2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (13.7)(10.4)=(1.47)(p2) equation:



(13.7)(10.4)=(1.47)(p2)
We move all terms to the left:
(13.7)(10.4)-((1.47)(p2))=0
We add all the numbers together, and all the variables
-((1.47)p2)+142.48=0
We calculate terms in parentheses: -((1.47)p2), so:
(1.47)p2
We multiply parentheses
1.47p^2
Back to the equation:
-(1.47p^2)
We get rid of parentheses
-1.47p^2+142.48=0
a = -1.47; b = 0; c = +142.48;
Δ = b2-4ac
Δ = 02-4·(-1.47)·142.48
Δ = 837.7824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{837.7824}}{2*-1.47}=\frac{0-\sqrt{837.7824}}{-2.94} =-\frac{\sqrt{}}{-2.94} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{837.7824}}{2*-1.47}=\frac{0+\sqrt{837.7824}}{-2.94} =\frac{\sqrt{}}{-2.94} $

See similar equations:

| -1-49=6-6q+2q | | 3(6x+3)=9(2x+1) | | 7-2m=11+m-7m | | x+2+3=90 | | 2(n−6)=4 | | 9=-t+12 | | -8x+-x+-15=12 | | 7x+4=15x-2 | | 0=-0.8x^2+150 | | 16+7a=a-2-6 | | x+2=1210 | | (3x-2)(5x+10)=0 | | 12−g=3 | | 10x+8=2x-8 | | 4(k+1)=12 | | P(t)=7.5+1.25t | | p+1/2=2 | | 9(x-4)=-90 | | 6p+17=3p+11 | | 2x-15=243 | | -a+1=a-5 | | 9(x−4)=−90 | | v=234 | | |5p-5|-8=32 | | -4=-h+5 | | 26=d-7 | | 5(2x+5)=-16+1 | | n/6-11n/12=1/6 | | -x=7x56 | | x2-3=1 | | p/8+57=60 | | d=6(-8) |

Equations solver categories