If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(11u)(3u-5)=0
We multiply parentheses
33u^2-55u=0
a = 33; b = -55; c = 0;
Δ = b2-4ac
Δ = -552-4·33·0
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-55}{2*33}=\frac{0}{66} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+55}{2*33}=\frac{110}{66} =1+2/3 $
| -20=-5+8(c+4) | | 5v-5=180 | | -11n+14n=12 | | (3x-4)=94 | | C=1.5m+4.5 | | 4x–5.4=41. | | -17z+12=-19z | | z/35=5/8 | | 2x-9=3x-29 | | 17v+20+17=-20+20v | | 12y+2=6(2y+1) | | 1/5x+3/10x=-3/2 | | 4+5x=-3x-6x-10 | | 20v=220 | | 10v=9v-8 | | (4+5a)=5a-11 | | 4(x-9)-20=8x-6x | | 3(c-11)-17=-8 | | -12x^2+60x-75=0 | | -18=3/17m | | x-45=-12 | | 2(b+1)+2=10 | | (4+5a)6=5a—11 | | 20v=-80 | | -4(4x+4)=-20x-32 | | 10x+35-4x=5x+25 | | 1.15/0.85=x/1.19 | | -130=10p | | 6(x+3)-(x+4=-11 | | 3x(2x+4)=2x(x+12) | | 3(j+9)-3=0 | | x-1(1-2x)+x-3=-4 |