(10x+9)(3x+13)=x+4

Simple and best practice solution for (10x+9)(3x+13)=x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x+9)(3x+13)=x+4 equation:



(10x+9)(3x+13)=x+4
We move all terms to the left:
(10x+9)(3x+13)-(x+4)=0
We get rid of parentheses
(10x+9)(3x+13)-x-4=0
We multiply parentheses ..
(+30x^2+130x+27x+117)-x-4=0
We add all the numbers together, and all the variables
(+30x^2+130x+27x+117)-1x-4=0
We get rid of parentheses
30x^2+130x+27x-1x+117-4=0
We add all the numbers together, and all the variables
30x^2+156x+113=0
a = 30; b = 156; c = +113;
Δ = b2-4ac
Δ = 1562-4·30·113
Δ = 10776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10776}=\sqrt{4*2694}=\sqrt{4}*\sqrt{2694}=2\sqrt{2694}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-2\sqrt{2694}}{2*30}=\frac{-156-2\sqrt{2694}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+2\sqrt{2694}}{2*30}=\frac{-156+2\sqrt{2694}}{60} $

See similar equations:

| (7x+18)=(4x+60) | | 5m-3=m+5 | | -36=-6-x | | x-x*0.2=72000 | | m/4-7=5 | | 3x-8+x+20=180 | | 11p=8p-3(5-2p) | | m(⅓)=6 | | 10/50=n/15 | | x-x*2000=72000 | | 5x−7=2(x+1 | | 2x=−3x+30 | | p+8=25 | | 24=6x/6x | | 2(1.8v+14.7)=76.8 | | 3^x+2=27^x-3 | | 2x+2(4x+5)=4x-(3x-30) | | (1/243)^x=27 | | -60=-12a | | 3x+2x+20+40+10=180 | | -7x+-14=35 | | 93=5p+16-4p | | -2=2/7x+4 | | 8z2+15z-27=0 | | -3x-6=-4x-6 | | 2m-(7-5m)-21=0 | | 2p-8p+1=9-10p | | 2x+4x-3+12=3-14+6x+x | | 3x-14/7=-25 | | -3x+2=-4x-3 | | -3x-6=4x+6 | | -3(x+2)=-2(2x-3) |

Equations solver categories