(1000+5x)x/100=91.80

Simple and best practice solution for (1000+5x)x/100=91.80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1000+5x)x/100=91.80 equation:



(1000+5x)x/100=91.80
We move all terms to the left:
(1000+5x)x/100-(91.80)=0
We add all the numbers together, and all the variables
(5x+1000)x/100-(91.8)=0
We add all the numbers together, and all the variables
(5x+1000)x/100-91.8=0
We multiply all the terms by the denominator
(5x+1000)x-(91.8)*100=0
We add all the numbers together, and all the variables
(5x+1000)x-9180=0
We multiply parentheses
5x^2+1000x-9180=0
a = 5; b = 1000; c = -9180;
Δ = b2-4ac
Δ = 10002-4·5·(-9180)
Δ = 1183600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1183600}=\sqrt{400*2959}=\sqrt{400}*\sqrt{2959}=20\sqrt{2959}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1000)-20\sqrt{2959}}{2*5}=\frac{-1000-20\sqrt{2959}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1000)+20\sqrt{2959}}{2*5}=\frac{-1000+20\sqrt{2959}}{10} $

See similar equations:

| 3(3x-2)+3x=2 | | -(2-a)-3a=0 | | 3p-7/5=4 | | 27-3g=2+2g | | 3x+4=28+x= | | 5a+17=2a+32 | | 5x-6=-3x-24 | | -3x+24=2x+4 | | (k+2)*(-1)+(8-k)-k+1=-2 | | (k+2)*(-1)+(8-k)-k+1=0 | | 5x-7=10x-18 | | 8x^2-6x+1=) | | 6a+29=11 | | 7x-25=2x+45 | | 180=n(44-4(n-1))) | | 19/4x=11 | | 2(x-5)-15=-3x+40 | | 6x^2=11x-7 | | 5x+15=15-(-5x) | | 3x+18=2x=20 | | 5s-26=69 | | t/2-6=13 | | 3^x+2+3^x-1=84 | | (3-r)-3r=-6 | | 4x+6x=11,60 | | (3-r)-3r=0 | | 3x/2-x/9=5/2 | | 3x-27=2x-(2-x)+36 | | -16j-14=9j-9 | | 6h-10=-4h-6 | | 9-9x=12-9x | | 14b+4=5b+31 |

Equations solver categories