(1/x)+(1/5x)=1/3

Simple and best practice solution for (1/x)+(1/5x)=1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x)+(1/5x)=1/3 equation:



(1/x)+(1/5x)=1/3
We move all terms to the left:
(1/x)+(1/5x)-(1/3)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/x)+(+1/5x)-(+1/3)=0
We get rid of parentheses
1/x+1/5x-1/3=0
We calculate fractions
(-25x^2)/45x^2+45x/45x^2+9x/45x^2=0
We multiply all the terms by the denominator
(-25x^2)+45x+9x=0
We add all the numbers together, and all the variables
(-25x^2)+54x=0
We get rid of parentheses
-25x^2+54x=0
a = -25; b = 54; c = 0;
Δ = b2-4ac
Δ = 542-4·(-25)·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2916}=54$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-54}{2*-25}=\frac{-108}{-50} =2+4/25 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+54}{2*-25}=\frac{0}{-50} =0 $

See similar equations:

| -13=m=-7 | | 222=7(-8p+7)+5 | | v/5+5=25 | | 0.5(x-8)=6x+7 | | 9√x+5−4=1 | | -3(4)+y=10 | | C(x)=17.5x−10;x=5 | | 75+18x=100 | | 8c-167=-6(4c-3)+7 | | 3150=7x | | 2(5x-4)-3(4x+3x)=-43 | | 12j-16=4J+4 | | -5m+4m=-8 | | 12j-12=6j+4 | | 14a−12a−2a+2a=20 | | 3p+7=6+10p | | 12j-12=4J+4 | | 75+2x=10020x | | 7^2+x^2=17^2 | | v/7=8 | | 5k-1=-9 | | 5m+4m=-8 | | 2x+12=11x-14 | | 7(3w+8)/8=7 | | 10x-6-8x=2(x-3) | | 75+2x=100+20x | | 16h-7h-4=14 | | 1c=8/c+2 | | 3.16=v/4 | | 7^2+x^2=11^2 | | 1-7w=-55. | | 21/r=6/8 |

Equations solver categories