(1/7)*x+(1/7)=3

Simple and best practice solution for (1/7)*x+(1/7)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/7)*x+(1/7)=3 equation:



(1/7)*x+(1/7)=3
We move all terms to the left:
(1/7)*x+(1/7)-(3)=0
Domain of the equation: 7)*x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/7)*x-3+(1/7)=0
We add all the numbers together, and all the variables
(+1/7)*x-3+(+1/7)=0
We multiply parentheses
x^2-3+(+1/7)=0
We get rid of parentheses
x^2-3+1/7=0
We multiply all the terms by the denominator
x^2*7+1-3*7=0
We add all the numbers together, and all the variables
x^2*7-20=0
Wy multiply elements
7x^2-20=0
a = 7; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·7·(-20)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*7}=\frac{0-4\sqrt{35}}{14} =-\frac{4\sqrt{35}}{14} =-\frac{2\sqrt{35}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*7}=\frac{0+4\sqrt{35}}{14} =\frac{4\sqrt{35}}{14} =\frac{2\sqrt{35}}{7} $

See similar equations:

| 2.2c-4=84 | | 48+7a=6 | | b=98−22 | | 6x+27=-30 | | x/6+2+8=x.3 | | s=68+26 | | 180=4w+8=4w+4 | | 17x=356 | | 2x+41=-121 | | 2z/9+5=-4 | | x+5-6=16 | | 3x+7=5(x+2)-(2x+1) | | 4w+8=4w+4=2w+11 | | x/8+7=1 | | 2(4+5x)^3/4=54 | | 11=12-2x | | 3=6+u | | 56+p=93 | | x5=x6+1 | | 1¼x=2¾ | | 14+p=72 | | (4x-20)/5=(2x-1)/7 | | 4d=76 | | 6/7r=3/5 | | c-12=148 | | 4x=-16-10x | | 33=9+p | | 14x=-52 | | 1/3x+4=3/4x-1 | | (2/3x)+(1/6)=1/2 | | 6v-9=3(v-6 | | 5(3x+5)+3(3x+5)+5=24x+46 |

Equations solver categories