(1/6)x=7776

Simple and best practice solution for (1/6)x=7776 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)x=7776 equation:



(1/6)x=7776
We move all terms to the left:
(1/6)x-(7776)=0
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)x-7776=0
We multiply parentheses
x^2-7776=0
a = 1; b = 0; c = -7776;
Δ = b2-4ac
Δ = 02-4·1·(-7776)
Δ = 31104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31104}=\sqrt{5184*6}=\sqrt{5184}*\sqrt{6}=72\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{6}}{2*1}=\frac{0-72\sqrt{6}}{2} =-\frac{72\sqrt{6}}{2} =-36\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{6}}{2*1}=\frac{0+72\sqrt{6}}{2} =\frac{72\sqrt{6}}{2} =36\sqrt{6} $

See similar equations:

| 2x-17=21-2x | | (80/x)+11x=98 | | 162=1-x | | 2(y-6)/3=4y | | 2m​2​​−16m+8=0 | | -2u=32 | | 12s-43=s+26 | | -8(7x-6)+3(4+x)=5x+6-4 | | 2(3x+5)+9=6x+19 | | y+5/6=72/3 | | 10+x/4=6 | | 40+3x+4+3x+4=180 | | 5(x-9)=8x-21 | | 0.80x+0.40(70)=0.40(64) | | 10x-5.4=500 | | .75(-8v-4)=2(v+6)-3v | | (7x-2)/2=13 | | 4x+2=3x+11 | | (m^2-4)(m^2+1)=0 | | 5x-9=4x-2 | | 5(x-8)+2=-38 | | X2-2x+1=4 | | Y-10+4y=30 | | -3(2+7x)+8(x+4)=3+x-5 | | 6(3n-5)=(4n+2)+1 | | 2^x=(7*2)/(7/2) | | 5x2=15x | | 3x2=5x | | 6x^2-8x=3x^2 | | 2/3b+1=25 | | 8(m-6)-8(-6-3m)=6m-3m | | 14+2=20+1.50x |

Equations solver categories