(1/6)(x+6)=11

Simple and best practice solution for (1/6)(x+6)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6)(x+6)=11 equation:



(1/6)(x+6)=11
We move all terms to the left:
(1/6)(x+6)-(11)=0
Domain of the equation: 6)(x+6)!=0
x∈R
We add all the numbers together, and all the variables
(+1/6)(x+6)-11=0
We multiply parentheses ..
(+x^2+1/6*6)-11=0
We multiply all the terms by the denominator
(+x^2+1-11*6*6)=0
We get rid of parentheses
x^2+1-11*6*6=0
We add all the numbers together, and all the variables
x^2-395=0
a = 1; b = 0; c = -395;
Δ = b2-4ac
Δ = 02-4·1·(-395)
Δ = 1580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1580}=\sqrt{4*395}=\sqrt{4}*\sqrt{395}=2\sqrt{395}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{395}}{2*1}=\frac{0-2\sqrt{395}}{2} =-\frac{2\sqrt{395}}{2} =-\sqrt{395} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{395}}{2*1}=\frac{0+2\sqrt{395}}{2} =\frac{2\sqrt{395}}{2} =\sqrt{395} $

See similar equations:

| -28r=4r2 | | 2d^2-14d+19=0 | | (5/7)(x-9)=25 | | 5x-x=1 | | 2y+8=68 | | −4x−81=−105 | | 5^2+21x+9=5 | | n+6÷2-4=24 | | p4+ 16=18 | | 6(x-1)-10=-4 | | 12d=116 | | 12x-6+5+4x=10x+5 | | 3.5/6=-14/k | | 6x-4=-24 | | F=2x-7 | | 9p-3=4p+2 | | 2+n/5=-5 | | -5/w=4/9 | | 3x-13=x=15 | | -3x-4=-7x6x | | 4m+6=3m+3 | | –2u=46 | | 4(w+1)=-46 | | 4(w+1)=-4 | | Y+z=4(8) | | 9x+3=153 | | x*x-8x+14=2x-7 | | 7x=44.8 | | 7x6x=12 | | -4=-1/2x+1 | | -4x+5x+22=54 | | 3b^2+17b+17=0 |

Equations solver categories