If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/6)(12p+24)=6
We move all terms to the left:
(1/6)(12p+24)-(6)=0
Domain of the equation: 6)(12p+24)!=0We add all the numbers together, and all the variables
p∈R
(+1/6)(12p+24)-6=0
We multiply parentheses ..
(+12p^2+1/6*24)-6=0
We multiply all the terms by the denominator
(+12p^2+1-6*6*24)=0
We get rid of parentheses
12p^2+1-6*6*24=0
We add all the numbers together, and all the variables
12p^2-863=0
a = 12; b = 0; c = -863;
Δ = b2-4ac
Δ = 02-4·12·(-863)
Δ = 41424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41424}=\sqrt{16*2589}=\sqrt{16}*\sqrt{2589}=4\sqrt{2589}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2589}}{2*12}=\frac{0-4\sqrt{2589}}{24} =-\frac{4\sqrt{2589}}{24} =-\frac{\sqrt{2589}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2589}}{2*12}=\frac{0+4\sqrt{2589}}{24} =\frac{4\sqrt{2589}}{24} =\frac{\sqrt{2589}}{6} $
| 26=-2(8x-5) | | 11x-9=13x-7 | | -t^2+5t=6.25 | | 90=10(4k-11) | | 9,5-1,5y=9,5-1,5y | | 5x-3(2-x)=2(3x+10) | | -8(2y-3)=56 | | /5x=2x+12* | | -18=2x-32 | | 6w−5w=4 | | n²-n=210 | | 12-6a=6 | | 17g=10+19g | | 4+2(-1)=5y | | (3x+1)/5=(X+7)/2-5 | | 6x+2=5x+35-25 | | .3x+12=5x+30 | | (3c+4)=8(c-2) | | 04(3c+4)=8(c-2 | | 2(2x+5)=3x+12 | | 1/4^a-3=1024 | | x/5+72=96 | | 426=g-532 | | 12x-8-6x+15=6-6x | | 6x-8=11x+7 | | 650000-x/650000*100=30 | | 30=650000-x/650000*100 | | 3x+6=2x-2=12x-20 | | (2*x)+(x+3)=30 | | 21/35-(-10)/35=x | | 2=43x-5 | | 3x+x+40=2x+20 |