(1/6(12x)-18)=2x-3

Simple and best practice solution for (1/6(12x)-18)=2x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/6(12x)-18)=2x-3 equation:



(1/6(12x)-18)=2x-3
We move all terms to the left:
(1/6(12x)-18)-(2x-3)=0
Domain of the equation: 612x-18)!=0
x∈R
We get rid of parentheses
1/612x-2x-18+3=0
We multiply all the terms by the denominator
-2x*612x-18*612x+3*612x+1=0
Wy multiply elements
-1224x^2-11016x+1836x+1=0
We add all the numbers together, and all the variables
-1224x^2-9180x+1=0
a = -1224; b = -9180; c = +1;
Δ = b2-4ac
Δ = -91802-4·(-1224)·1
Δ = 84277296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84277296}=\sqrt{144*585259}=\sqrt{144}*\sqrt{585259}=12\sqrt{585259}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9180)-12\sqrt{585259}}{2*-1224}=\frac{9180-12\sqrt{585259}}{-2448} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9180)+12\sqrt{585259}}{2*-1224}=\frac{9180+12\sqrt{585259}}{-2448} $

See similar equations:

| 5(m-3)-7=-2(m+4)+1 | | -1=m=|-2| | | -17+6v=6(10v-4)+7 | | 31x+7x=9x+7x+6 | | 6x-12=-17 | | -6x-21=+3x | | 6y+-10+-3y+9=0 | | X+2(7x+7)=119 | | (4y-5)^2=0 | | 0.5m-2.5=54m+2 | | 16^(2x+1)=2^(5-x) | | 5b+-10=-30 | | 3x+2(4+6)=34 | | 5x+31x+7x=9x+7x+6 | | 8y+4y=7y-2 | | 40x^2=4x | | -5(3x+2)=-11x-14 | | 0.5(x+6)=1+0.25(x-4) | | -2(x+7)-4(5-x)=10 | | 12x-6=-6+12x | | 2x^-8x=-15 | | -3(x-1)+7=31 | | 6.9g+4=4.9+8 | | 6-x/7=9 | | 7(v+10)=5-(-7v-65) | | 8h-10=3h-15 | | 9/(k+3)=3/5 | | 6x+8=2(3x+2) | | 1/10=1/10p+20/10 | | 141=16x-3 | | 4x-13=7x-5 | | 180=x+13+2x+7+5x |

Equations solver categories