(1/5)x+13+x=1-9x+22

Simple and best practice solution for (1/5)x+13+x=1-9x+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)x+13+x=1-9x+22 equation:



(1/5)x+13+x=1-9x+22
We move all terms to the left:
(1/5)x+13+x-(1-9x+22)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)x+x-(-9x+23)+13=0
We add all the numbers together, and all the variables
x+(+1/5)x-(-9x+23)+13=0
We multiply parentheses
x^2+x-(-9x+23)+13=0
We get rid of parentheses
x^2+x+9x-23+13=0
We add all the numbers together, and all the variables
x^2+10x-10=0
a = 1; b = 10; c = -10;
Δ = b2-4ac
Δ = 102-4·1·(-10)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{35}}{2*1}=\frac{-10-2\sqrt{35}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{35}}{2*1}=\frac{-10+2\sqrt{35}}{2} $

See similar equations:

| 3(2x+11)=5(x-4) | | -2/7j=7 | | (X+8)=2x-7+8(x-1) | | Y-2=-1/3(x+4) | | -17/9s=-1/3 | | 8-1/3=n-13 | | 42x+18=-24+988x | | 8(x–2)+4(x+3)=68 | | x^2-1=23 | | -54=3(w-9) | | 5.8+z=-2 | | h=−16^2+32+4 | | 15g-9g=6 | | 1=3/5h | | X^2-8x+60=0 | | 8x+5=12x-45 | | 10+16=6t+42 | | z-4/8-1/3=5/9 | | h=-16(1^2)+32(1)=16 | | c÷2.5=-4.2 | | 40=2h-38 | | 12=-4/7u | | 2w^2=1800 | | 4x/3-7=7 | | 3x+x+x+60=180 | | 62=17+5h | | 16z+15=13z | | 10(u+2)=70 | | w+22/10=5 | | 0.55x=90 | | 3=23-4q | | 8=10-2s |

Equations solver categories