If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/5)x+(1/3)=3
We move all terms to the left:
(1/5)x+(1/3)-(3)=0
Domain of the equation: 5)x!=0determiningTheFunctionDomain (1/5)x-3+(1/3)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)x-3+(+1/3)=0
We multiply parentheses
x^2-3+(+1/3)=0
We get rid of parentheses
x^2-3+1/3=0
We multiply all the terms by the denominator
x^2*3+1-3*3=0
We add all the numbers together, and all the variables
x^2*3-8=0
Wy multiply elements
3x^2-8=0
a = 3; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·3·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*3}=\frac{0-4\sqrt{6}}{6} =-\frac{4\sqrt{6}}{6} =-\frac{2\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*3}=\frac{0+4\sqrt{6}}{6} =\frac{4\sqrt{6}}{6} =\frac{2\sqrt{6}}{3} $
| 12=7/2(5x=2) | | n/14=-1 | | 2x+1xx-2=63 | | 3(4x+7)=6(5x-2)-(3x-3) | | (x*1.75)-x=40.42 | | 2(3+5x)+2=4+16x | | 7x-3(-4/5)=4 | | 81=27^-x+1 | | 3x-9=8x-19 | | -3x+5x=12+4 | | 3+6x=3=x | | 3(x-4)+(5x-3)=4(2x-1)-12 | | (x*1.58)-x=46,67 | | x/5+7=7 | | 5(x+3)^2-10(x+3)=4 | | 23x-46=50x+10 | | 28=12m+18 | | -8c+20=-36 | | 5y−3=3y+11 | | 18y+17=528 | | x6+8=21 | | 11−c=−11 | | 40+5x+14x+x=180 | | 6−c=−15 | | 2-1/4x=7 | | x/5=7/15x= | | 6x+0.9=24.9 | | 3x2x+3=12 | | y/3-7=-19 | | -6x-24=30 | | 5(3x-8)+3(7x+6)=6((8x+3)-8x | | -8c+20=36 |