(1/5)b+(2/5)b=15

Simple and best practice solution for (1/5)b+(2/5)b=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/5)b+(2/5)b=15 equation:



(1/5)b+(2/5)b=15
We move all terms to the left:
(1/5)b+(2/5)b-(15)=0
Domain of the equation: 5)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+1/5)b+(+2/5)b-15=0
We multiply parentheses
b^2+2b^2-15=0
We add all the numbers together, and all the variables
3b^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $

See similar equations:

| 5(r-2)=4(r-3)+4 | | 152-u=30 | | -116=-8x-4 | | 4–3(t+2)+t=5(t-1)-8t | | -4+7(1-3f)=-6(1+5f) | | -2(3a-6)=-4a | | 2x+10=4x+20= | | 0.4x=-16 | | 3y-14=1010= | | -20+7p=3(4+5p) | | -14=−7(y+8) | | 7=91-h | | x+3=52x+134 | | 20+(-3.05)+(-9.5)=k | | 6x+-9=-12 | | 12=w/3+1+4 | | 8h-5=19 | | 3^4-^1=81^x | | +4y-8=+2y+6 | | 54/s=6 | | +4x-8=+2x+6 | | 2/3x2=-4 | | 20+2z=72 | | 100/t=10 | | 12a–16a=–8 | | w/5+11=15 | | 62=17+5r | | 2n+4=n+11 | | 024(x-13)=7 | | +5y-8=8y+7= | | 4w+51=-33 | | 8+4y=88 |

Equations solver categories