(1/4x)+7=(2x)-3

Simple and best practice solution for (1/4x)+7=(2x)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4x)+7=(2x)-3 equation:



(1/4x)+7=(2x)-3
We move all terms to the left:
(1/4x)+7-((2x)-3)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/4x)-(2x-3)+7=0
We get rid of parentheses
1/4x-2x+3+7=0
We multiply all the terms by the denominator
-2x*4x+3*4x+7*4x+1=0
Wy multiply elements
-8x^2+12x+28x+1=0
We add all the numbers together, and all the variables
-8x^2+40x+1=0
a = -8; b = 40; c = +1;
Δ = b2-4ac
Δ = 402-4·(-8)·1
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{102}}{2*-8}=\frac{-40-4\sqrt{102}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{102}}{2*-8}=\frac{-40+4\sqrt{102}}{-16} $

See similar equations:

| 23-2m=11 | | 8x-12=6x+2= | | 2(4x-1)=x+7 | | y+18/8=6 | | 5s-28=47 | | 5d+4=2d+16 | | 72=9(u+1) | | 3x+4-12x-3=-8x+5 | | 2x+7=x+11x | | 28-4z=0 | | 3(4y+4)+2(2y+5)=6 | | 3(x+2)+3(7x+8)=6 | | 7y-36=20 | | 7x6+5=30 | | X+6=x/3-4 | | 2(4w+6)=4(w+2) | | 3(6z+2)=6(2z+2) | | (2b-3.4)÷0.6=-29 | | 2x/3=84 | | 4x+7=25-4x | | j/8+4=7 | | 1÷4a-12÷8=4 | | 5c-7=3c+16 | | 32x-6=32 | | 22+2q+4q-16+5q+7=55 | | -4x-14=-6x=12 | | (1÷4)a-12÷8=4 | | 2(3w+6)=5(w+6) | | 2q=9=20 | | 3x+14=6x+5 | | 32-6=x | | 9j=125 |

Equations solver categories