(1/4x)+6=2x-8

Simple and best practice solution for (1/4x)+6=2x-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4x)+6=2x-8 equation:



(1/4x)+6=2x-8
We move all terms to the left:
(1/4x)+6-(2x-8)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/4x)-(2x-8)+6=0
We get rid of parentheses
1/4x-2x+8+6=0
We multiply all the terms by the denominator
-2x*4x+8*4x+6*4x+1=0
Wy multiply elements
-8x^2+32x+24x+1=0
We add all the numbers together, and all the variables
-8x^2+56x+1=0
a = -8; b = 56; c = +1;
Δ = b2-4ac
Δ = 562-4·(-8)·1
Δ = 3168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3168}=\sqrt{144*22}=\sqrt{144}*\sqrt{22}=12\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-12\sqrt{22}}{2*-8}=\frac{-56-12\sqrt{22}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+12\sqrt{22}}{2*-8}=\frac{-56+12\sqrt{22}}{-16} $

See similar equations:

| -88=-4(6+8k) | | 7p-1=4p+8 | | 1/4x+6=2x-8 | | 20p^2=3.8p+1.2=0 | | 24/(-1/2)=p | | 8x-6x-12=3x-18 | | 6p-6=7p | | 42=-x+235 | | 5(x+4)=5x+4 | | 200x+21=10x-55 | | 3x-2(2x-7)=-9 | | 15(2x−10)+4x=−3(15x+4)15(2x-10)+4x=-3(15x+4) | | -5-9z=-9z-5 | | 9x+9-90-9x=9 | | 3(2x+8)=6(x+2) | | 24-x=161 | | 7x-5+7×-5=46 | | 55+75x=185x | | -1-7m=m+7 | | -3(u+4)=7u-6+2(4u+4) | | 20=4z+4 | | 3d+5d=28 | | 3x=13x+4 | | -21.85=1-6.5n+1.2 | | -p+6p=0 | | -(x+7)=-6x=8 | | 2^40+2^40=2^x | | 5(x-3+2x=27 | | 2(n-2)=1/2(4n-16 | | 3x=5x-7=21 | | 251/42=1/6b+1-2b | | 16-3k=20-k |

Equations solver categories