(1/4)(4x+7)=5

Simple and best practice solution for (1/4)(4x+7)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(4x+7)=5 equation:



(1/4)(4x+7)=5
We move all terms to the left:
(1/4)(4x+7)-(5)=0
Domain of the equation: 4)(4x+7)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(4x+7)-5=0
We multiply parentheses ..
(+4x^2+1/4*7)-5=0
We multiply all the terms by the denominator
(+4x^2+1-5*4*7)=0
We get rid of parentheses
4x^2+1-5*4*7=0
We add all the numbers together, and all the variables
4x^2-139=0
a = 4; b = 0; c = -139;
Δ = b2-4ac
Δ = 02-4·4·(-139)
Δ = 2224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2224}=\sqrt{16*139}=\sqrt{16}*\sqrt{139}=4\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{139}}{2*4}=\frac{0-4\sqrt{139}}{8} =-\frac{4\sqrt{139}}{8} =-\frac{\sqrt{139}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{139}}{2*4}=\frac{0+4\sqrt{139}}{8} =\frac{4\sqrt{139}}{8} =\frac{\sqrt{139}}{2} $

See similar equations:

| 42=100-0.02x | | 9x×x=135 | | 3(2m-5)=51 | | -9(u+5)=-18 | | 2(7x+2)=8x | | 4(7x+2)=8x | | k/2.7+1.3=5.6 | | 24a-17=-4(1-6a)+5 | | 4096=3375(1+r/100) | | (2x+5)^2=46 | | (3x-5)+4=x-11. | | 5h-30=138 | | 4x+26=-18 | | d/5+4=18 | | 8x+3(7x−6)= | | 21x-3=63 | | d2+18d+56=0 | | (9x−5)2−(x−20)2=0. | | -1(1+7x)-2x+8x-6(7-x)=36+6x | | -3p+8=16 | | (X-8)+6x=180 | | t2−6t−7=0 | | y2+10y+16=0 | | 3c+2=44 | | x+21/3=58/9 | | 130+170+7.5x=1060 | | -1/2x+19=-1/4x+54 | | x-4/1=6 | | 2(x+3)+5=29 | | 1/2(s-12)=1/4(s+6) | | c2+16c+60=0 | | 8m+4=24 |

Equations solver categories