If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)(20-4a)=6-a
We move all terms to the left:
(1/4)(20-4a)-(6-a)=0
Domain of the equation: 4)(20-4a)!=0We add all the numbers together, and all the variables
a∈R
(+1/4)(-4a+20)-(-1a+6)=0
We get rid of parentheses
(+1/4)(-4a+20)+1a-6=0
We multiply parentheses ..
(-4a^2+1/4*20)+1a-6=0
We multiply all the terms by the denominator
(-4a^2+1+1a*4*20)-6*4*20)=0
We add all the numbers together, and all the variables
(-4a^2+1+1a*4*20)=0
We get rid of parentheses
-4a^2+1a*4*20+1=0
Wy multiply elements
-4a^2+80a*2+1=0
Wy multiply elements
-4a^2+160a+1=0
a = -4; b = 160; c = +1;
Δ = b2-4ac
Δ = 1602-4·(-4)·1
Δ = 25616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25616}=\sqrt{16*1601}=\sqrt{16}*\sqrt{1601}=4\sqrt{1601}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-4\sqrt{1601}}{2*-4}=\frac{-160-4\sqrt{1601}}{-8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+4\sqrt{1601}}{2*-4}=\frac{-160+4\sqrt{1601}}{-8} $
| 5(2x-1)=(3x+4) | | 5x+6=149 | | X^2+16x^2=0 | | m/2,5=6,5 | | 38-6n=-2(-7+5n) | | 10a/6-7/12+9a/12=26/12 | | 5+6x+6x=5 | | 3x+6=8x-1 | | 3x+10+5x=82 | | 2450=1500+z/1.025 | | -33/16÷x=-11/4 | | 22-0=2x-12x | | -3x-8x=25 | | m/2.5=6.5 | | 56=32+8x | | 10a-7+3a=-26 | | 0.6666x+6=0.5x+0.25x | | X+3+x+(-8)+x=55 | | 15+3x=21=x | | -6=8/x+4 | | F(1.45)=-16(1.45)^2+b(1.45)+1.5 | | 6t+5t=10 | | (0.07x)+88+x=2500 | | 4n+22=2n+20 | | 6x=2×+40 | | 13-x/2=3x | | 2x/3+6=1x/2+1x/4 | | 7.5=17w | | t+5t=10 | | x+30=(75)+30 | | 2x^2-10x=-7x-2 | | 56-(3c+4)=4(c+7)=c |