(1/4)(12x+8)=20

Simple and best practice solution for (1/4)(12x+8)=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/4)(12x+8)=20 equation:



(1/4)(12x+8)=20
We move all terms to the left:
(1/4)(12x+8)-(20)=0
Domain of the equation: 4)(12x+8)!=0
x∈R
We add all the numbers together, and all the variables
(+1/4)(12x+8)-20=0
We multiply parentheses ..
(+12x^2+1/4*8)-20=0
We multiply all the terms by the denominator
(+12x^2+1-20*4*8)=0
We get rid of parentheses
12x^2+1-20*4*8=0
We add all the numbers together, and all the variables
12x^2-639=0
a = 12; b = 0; c = -639;
Δ = b2-4ac
Δ = 02-4·12·(-639)
Δ = 30672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30672}=\sqrt{144*213}=\sqrt{144}*\sqrt{213}=12\sqrt{213}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{213}}{2*12}=\frac{0-12\sqrt{213}}{24} =-\frac{12\sqrt{213}}{24} =-\frac{\sqrt{213}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{213}}{2*12}=\frac{0+12\sqrt{213}}{24} =\frac{12\sqrt{213}}{24} =\frac{\sqrt{213}}{2} $

See similar equations:

| 10=x(3x-13) | | 8x+96=28x-4 | | 8x+11(3x+44000=5568000 | | 15k+5k-16k=20 | | 8x+119=26x+11 | | 5×+2(11-x)=-5 | | 9m+15/3m+5-2=29/4m+1 | | 15k+5k-16=20 | | 10x+59=16x-1 | | y+1(9 +24)-28=2 | | Y=-15x+400 | | 5x-4=-x+50 | | 18q-10q-8q+4q+2q=18 | | -4w-5=-19 | | 15-18x=-3x | | 6x-21=5x+17+× | | 10=a/1+10 | | 14+2(x-3)=40 | | 18/6x=4/(x+3) | | 11/4=13/16x | | 17u-8u=45 | | 6=146/7x | | 12x-3=x+19 | | 11q-10q=13 | | -2x+10=2x(-x+5)+1 | | (1–3x)=4(–+2)0=x | | 2x+7=× | | 164-y=215 | | -5/6)8+5b)=75+5/3b | | 24=4(k+1)+k | | 9t-7t=12 | | 25-7x=10-2x |

Equations solver categories