-2x+10=2x(-x+5)+1

Simple and best practice solution for -2x+10=2x(-x+5)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x+10=2x(-x+5)+1 equation:



-2x+10=2x(-x+5)+1
We move all terms to the left:
-2x+10-(2x(-x+5)+1)=0
We add all the numbers together, and all the variables
-2x-(2x(-1x+5)+1)+10=0
We calculate terms in parentheses: -(2x(-1x+5)+1), so:
2x(-1x+5)+1
We multiply parentheses
-2x^2+10x+1
Back to the equation:
-(-2x^2+10x+1)
We get rid of parentheses
2x^2-10x-2x-1+10=0
We add all the numbers together, and all the variables
2x^2-12x+9=0
a = 2; b = -12; c = +9;
Δ = b2-4ac
Δ = -122-4·2·9
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*2}=\frac{12-6\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*2}=\frac{12+6\sqrt{2}}{4} $

See similar equations:

| (1–3x)=4(–+2)0=x | | 2x+7=× | | 164-y=215 | | -5/6)8+5b)=75+5/3b | | 24=4(k+1)+k | | 9t-7t=12 | | 25-7x=10-2x | | 14h-13h=16 | | -1/3(t+3)-10=-6.5 | | 10x^2+3x+150=0 | | 11/(x+2)=4/(x-1) | | 5=7x2+4x | | 43+-7x=180 | | 14x+12=15x-9 | | 3/4x+1/2(4x+8)=-1/4x-2 | | 20k-19k=17 | | 0.5p=20-2.75 | | 4+r^2=125 | | T=8p+38 | | X=8.25-0.25y | | 7(=5+2p) | | 7.4/2.5=16/y | | 279=11-y | | 6y=9-3y | | 13(18+-1.384615385x)+18x=234 | | 4x-1=x-6 | | 6x+30=5x | | 5x+4=4x-23 | | 6x+5=4x+85 | | 9(2n=1) | | 8/45=x/25 | | -2/3(9-6x)=-18 |

Equations solver categories