(1/3x)+(x)=180

Simple and best practice solution for (1/3x)+(x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3x)+(x)=180 equation:



(1/3x)+(x)=180
We move all terms to the left:
(1/3x)+(x)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3x)+x-180=0
We add all the numbers together, and all the variables
x+(+1/3x)-180=0
We get rid of parentheses
x+1/3x-180=0
We multiply all the terms by the denominator
x*3x-180*3x+1=0
Wy multiply elements
3x^2-540x+1=0
a = 3; b = -540; c = +1;
Δ = b2-4ac
Δ = -5402-4·3·1
Δ = 291588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291588}=\sqrt{8836*33}=\sqrt{8836}*\sqrt{33}=94\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-94\sqrt{33}}{2*3}=\frac{540-94\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+94\sqrt{33}}{2*3}=\frac{540+94\sqrt{33}}{6} $

See similar equations:

| 1,17x=x+24000 | | m/5+5=10 | | -2(3x-7)=2x-2 | | 4x-11=5+8x | | -(x+7)-4=-6-2(3x-5) | | 3x+8.36=12.57 | | -6=2(x+15) | | 9x-10-5x=22 | | 7/4n+1/3n=25/6 | | 1m+1=1-2m-6 | | -4-9x=7x+6 | | 52=9m+7 | | 235=-5(-8b+1) | | 2=2s−6 | | –5z−–13z−7z=–8 | | 3-x/6=4 | | (1/2)x-4=10 | | (-1/3)x-4=1/3+16 | | m/ | | -10y-4=2y-28 | | 7+x/9=16 | | 9=-6r+3 | | -(n-7)-2n+5n-3=-6 | | -10c+5-8c=59 | | 11d=5=27 | | 253=64-v | | 5/3p+1+2p=-43/12 | | q+11/8=6 | | X²+y²=208 | | x/5-5=(-13) | | 6x-9=3-4x | | x=9=-15 |

Equations solver categories