(1/3)(x+1)=1

Simple and best practice solution for (1/3)(x+1)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)(x+1)=1 equation:



(1/3)(x+1)=1
We move all terms to the left:
(1/3)(x+1)-(1)=0
Domain of the equation: 3)(x+1)!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)(x+1)-1=0
We multiply parentheses ..
(+x^2+1/3*1)-1=0
We multiply all the terms by the denominator
(+x^2+1-1*3*1)=0
We get rid of parentheses
x^2+1-1*3*1=0
We add all the numbers together, and all the variables
x^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| 18+0.3x=9 | | 1/5x-2/5=-1/5x+2/3 | | .3333333333333333333333333333333333(x+1)=1 | | 8x-28=2x-2 | | (2x+6)+(4x)=90 | | 3d-9=18 | | 4x-5=4-2x+6x | | (2x+6)(4x)=90 | | 6(0.5d=1 | | 3(2x-1)=6x+2-7 | | 12x+23=1 | | 2y=11.5 | | 7x^2-14x+70=0 | | 7.3y-15.18=-51.9 | | 7.3y-15.18=-59.9 | | 2x+10-2=-8x-5 | | 3(x+9)+4=15+x+2x+16 | | 10+(x/3)=1 | | 3(x+9)+4=15+x+2x+156 | | -24/6=4/6+9/6r | | -x-8=-4x-3 | | 4x-5=25+6x | | –6d=–5d+9 | | 8x-1+7=2(2x+11) | | 1x+5(x+1)=4(2x-2)+11x | | 6/m-4=19 | | 5–x=11 | | 5x-14+96=180 | | 54=9+t | | 66=17x-2 | | f/11=15 | | -4(x–1)+2=-(x–3)+5x |

Equations solver categories