(1/2x+24)+(3x-46)=86

Simple and best practice solution for (1/2x+24)+(3x-46)=86 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x+24)+(3x-46)=86 equation:



(1/2x+24)+(3x-46)=86
We move all terms to the left:
(1/2x+24)+(3x-46)-(86)=0
Domain of the equation: 2x+24)!=0
x∈R
We get rid of parentheses
1/2x+3x+24-46-86=0
We multiply all the terms by the denominator
3x*2x+24*2x-46*2x-86*2x+1=0
Wy multiply elements
6x^2+48x-92x-172x+1=0
We add all the numbers together, and all the variables
6x^2-216x+1=0
a = 6; b = -216; c = +1;
Δ = b2-4ac
Δ = -2162-4·6·1
Δ = 46632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46632}=\sqrt{4*11658}=\sqrt{4}*\sqrt{11658}=2\sqrt{11658}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-2\sqrt{11658}}{2*6}=\frac{216-2\sqrt{11658}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+2\sqrt{11658}}{2*6}=\frac{216+2\sqrt{11658}}{12} $

See similar equations:

| 0+0.5y=25 | | 20x+4=108 | | -1/4(x+2)+5=x | | -7(1-7n+5(8-3n)=-1 | | -6=-2x+8=7 | | y−3=5(2) | | 9a^2-26a+98=0 | | u+1.6=3.38 | | 44=y^2+4 | | -2x-(4-8x)=26-4x | | -6=-2x7+8 | | -2b-6(b-8)=-5b+6(2-b) | | 8y-5y-6=55.98 | | 0.5s=1=7+4.5s | | 3(4n+6)=34+8n | | 3/4x=x-2 | | 72=1/2x(8+1) | | 8=213-x | | 5(b-2)=-5b-20 | | 17-7b=-5(3+3b) | | -w+16=200 | | Y=x-3/10 | | -7(n+1)+7(n+3)=3-3n+n-7 | | 5(1-7k)=180 | | -u+159=29 | | (9y+3)+(2y+9)=90 | | 2.51.2k=27.7k | | (9y+3)+(2y+9)=180 | | 20x-13=20+3x | | 88=9v+7 | | -4(a+6)-2(4a+3)=-6a-a | | 7+7n=4(n+1) |

Equations solver categories