(1/2x)-2=6x+20

Simple and best practice solution for (1/2x)-2=6x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)-2=6x+20 equation:



(1/2x)-2=6x+20
We move all terms to the left:
(1/2x)-2-(6x+20)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)-(6x+20)-2=0
We get rid of parentheses
1/2x-6x-20-2=0
We multiply all the terms by the denominator
-6x*2x-20*2x-2*2x+1=0
Wy multiply elements
-12x^2-40x-4x+1=0
We add all the numbers together, and all the variables
-12x^2-44x+1=0
a = -12; b = -44; c = +1;
Δ = b2-4ac
Δ = -442-4·(-12)·1
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-8\sqrt{31}}{2*-12}=\frac{44-8\sqrt{31}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+8\sqrt{31}}{2*-12}=\frac{44+8\sqrt{31}}{-24} $

See similar equations:

| 2^{3x-9}x-2^{3x-4}+2^8=2^3x | | 0.10+15.50=c | | X+2(2x-5)=9x+8 | | 7*x=27 | | 11xx=352 | | -13x-44=10-7x | | 6u+8-7u=16 | | -12x+-9+20x+10=-95 | | {3}{4}(x+8)=9 | | 6u+8–7u=16 | | • 3X+3y=-9 | | 5s-1=29 | | 50(x-20)=x | | 3(y+2)=2(y+5 | | 6x-(4x+9)=(x-1)-2(4x-6) | | 6(13c+2)=3c+12 | | +2y=-17 | | 5x-2+8x+10=-20 | | 7x-2x+7=3(x-4)+20 | | --4+3x=7x+x+14-8x | | 1.5(2y-8)-2=4 | | B^2+25b-66=0 | | 3x+4.2=9.5 | | x³-10(x)=100 | | | | | | 12+2n-10=-4 | | P=3q+3= | | x(x+3)(2x+3)=3 | | 72+5u=14u | | 2(8s+9)-10s=3(2s+1)-5 | | 8+7n-66n=9n |

Equations solver categories