(1/2x)+x=500

Simple and best practice solution for (1/2x)+x=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)+x=500 equation:



(1/2x)+x=500
We move all terms to the left:
(1/2x)+x-(500)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+x-500=0
We add all the numbers together, and all the variables
x+(+1/2x)-500=0
We get rid of parentheses
x+1/2x-500=0
We multiply all the terms by the denominator
x*2x-500*2x+1=0
Wy multiply elements
2x^2-1000x+1=0
a = 2; b = -1000; c = +1;
Δ = b2-4ac
Δ = -10002-4·2·1
Δ = 999992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{999992}=\sqrt{196*5102}=\sqrt{196}*\sqrt{5102}=14\sqrt{5102}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-14\sqrt{5102}}{2*2}=\frac{1000-14\sqrt{5102}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+14\sqrt{5102}}{2*2}=\frac{1000+14\sqrt{5102}}{4} $

See similar equations:

| 21=2x-12 | | 6+7=2h-1h | | 14-x=35 | | 2x3+4x2+2x+4=0 | | 18-5p=-12 | | 7y+5=4(y-2)+3 | | 7y+5=4(y-2) | | 3=5(x-2) | | 5+k-2÷7=8 | | 0.285x=-4 | | a1=-15 | | (t-2)=4(2t+3) | | 13/45+7/18=x | | 3q-14=13 | | 24+8b=272 | | X2-12x+3=8 | | -8+15y-18=2y+12 | | 3(j+15)=-6 | | -3(2+x=-6 | | -7=-(v-11) | | 4(m+3)-5=11 | | x-0.10x=153 | | 19/10/21/10=b/84/10 | | 4(m+3)-5=5 | | 0.10x=153 | | -p+12=14 | | 4(3-p)=8 | | 4^q=2 | | 6=3(h-7) | | 10.50+6+2.25+1p+2=39.75 | | 2=c-4^2 | | 6t=-72 |

Equations solver categories