(1/2x)+(x)=30

Simple and best practice solution for (1/2x)+(x)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2x)+(x)=30 equation:



(1/2x)+(x)=30
We move all terms to the left:
(1/2x)+(x)-(30)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2x)+x-30=0
We add all the numbers together, and all the variables
x+(+1/2x)-30=0
We get rid of parentheses
x+1/2x-30=0
We multiply all the terms by the denominator
x*2x-30*2x+1=0
Wy multiply elements
2x^2-60x+1=0
a = 2; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·2·1
Δ = 3592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3592}=\sqrt{4*898}=\sqrt{4}*\sqrt{898}=2\sqrt{898}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{898}}{2*2}=\frac{60-2\sqrt{898}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{898}}{2*2}=\frac{60+2\sqrt{898}}{4} $

See similar equations:

| 2x^-3=16/27 | | |2c-4*6|-10=34 | | |2c-4(6)|-10=34 | | 3x-4+5x=10-2x | | 5(x+2)-2x=19 | | .y/4=5 | | v2+2v=24 | | 1/6d-8=5/8 | | X+1/2-x-3/3=5 | | -2b+4(2(4.5)-3)=12 | | x-45=-29 | | 2(x+3x-5)=78 | | 2x(x+3x-5)=78 | | 5(2a-3)=30 | | -3(3x-6)+5(4x-5)=15 | | 3x-16=100 | | 3m(m-10)=0 | | -5(7x-4)+5(8x-3)=15 | | 25^x+1=125 | | 3(h-5)=-21 | | 25^(x+1)=125 | | ​​7n-24=4n+6 | | 6x2+72x=0 | | 9m+10=70 | | n-5+12=20 | | 14x+20=−9 | | 2.6x=x+4 | | 9(x+4)=62 | | 21x+30°=180 | | 9x+72=4x+92 | | 12.6-2s=-5.4 | | 5=w8-3 |

Equations solver categories