If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m(m-10)=0
We multiply parentheses
3m^2-30m=0
a = 3; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·3·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*3}=\frac{0}{6} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*3}=\frac{60}{6} =10 $
| -5(7x-4)+5(8x-3)=15 | | 25^x+1=125 | | 3(h-5)=-21 | | 25^(x+1)=125 | | 7n-24=4n+6 | | 6x2+72x=0 | | 9m+10=70 | | n-5+12=20 | | 14x+20=−9 | | 2.6x=x+4 | | 9(x+4)=62 | | 21x+30°=180 | | 9x+72=4x+92 | | 12.6-2s=-5.4 | | 5=w8-3 | | 3s-5=-20 | | 9x+72=4x92 | | 2y+3y+8=28 | | 12-4x+2x²=7 | | R=y+× | | G=3a+3 | | 2/n=4/20 | | (15x-6)=(7x+18) | | h/6=1 | | 3x/5+5x/4=3/15 | | x-12=15+4 | | 25x=125x=5 | | 6+(2x-3)=18 | | 4=a/5-7 | | 40=-6x-2 | | 5x=125;x=25 | | 1x-3-2=0 |