(1/2n)+7=n+14/2

Simple and best practice solution for (1/2n)+7=n+14/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2n)+7=n+14/2 equation:



(1/2n)+7=n+14/2
We move all terms to the left:
(1/2n)+7-(n+14/2)=0
Domain of the equation: 2n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+1/2n)-(n+7)+7=0
We get rid of parentheses
1/2n-n-7+7=0
We multiply all the terms by the denominator
-n*2n-7*2n+7*2n+1=0
Wy multiply elements
-2n^2-14n+14n+1=0
We add all the numbers together, and all the variables
-2n^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 9=c/3=5 | | -18=5-(2k-19) | | 9 = c3+ 5 | | 9(n-4)7n=32-2(n+8) | | 55-16x^2=0 | | 1,5n+3=31,5 | | 16k-24=6k-13 | | 58-3x=1 | | 10{0.4+0.5g}=4g | | 88=8(p=7) | | n-2+78=5n | | 7+9x=-2(3x-5) | | 18+.5x=1/4x+54 | | 32-2x=8 | | 2=f/4-3 | | 4n+0.12=6n+0.2 | | 20-8x=-12 | | 4n=2004 | | 700-9.5x=4.65 | | -4=t+2•16 | | 6x+-16=4 | | y/4+3=-13 | | -n+15=-87 | | -3y=1/6 | | 6=24-9x | | (y+2)/1=3.1 | | 2(x-6)+3x=5x+6 | | 1/2+18=1/4x+54 | | 1/3x-3/21/2=4/5 | | 12-a=6 | | 936=9(t-831) | | 4=31.7-3x |

Equations solver categories