9(n-4)7n=32-2(n+8)

Simple and best practice solution for 9(n-4)7n=32-2(n+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(n-4)7n=32-2(n+8) equation:



9(n-4)7n=32-2(n+8)
We move all terms to the left:
9(n-4)7n-(32-2(n+8))=0
We multiply parentheses
63n^2-252n-(32-2(n+8))=0
We calculate terms in parentheses: -(32-2(n+8)), so:
32-2(n+8)
determiningTheFunctionDomain -2(n+8)+32
We multiply parentheses
-2n-16+32
We add all the numbers together, and all the variables
-2n+16
Back to the equation:
-(-2n+16)
We get rid of parentheses
63n^2-252n+2n-16=0
We add all the numbers together, and all the variables
63n^2-250n-16=0
a = 63; b = -250; c = -16;
Δ = b2-4ac
Δ = -2502-4·63·(-16)
Δ = 66532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66532}=\sqrt{4*16633}=\sqrt{4}*\sqrt{16633}=2\sqrt{16633}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-250)-2\sqrt{16633}}{2*63}=\frac{250-2\sqrt{16633}}{126} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-250)+2\sqrt{16633}}{2*63}=\frac{250+2\sqrt{16633}}{126} $

See similar equations:

| 55-16x^2=0 | | 1,5n+3=31,5 | | 16k-24=6k-13 | | 58-3x=1 | | 10{0.4+0.5g}=4g | | 88=8(p=7) | | n-2+78=5n | | 7+9x=-2(3x-5) | | 18+.5x=1/4x+54 | | 32-2x=8 | | 2=f/4-3 | | 4n+0.12=6n+0.2 | | 20-8x=-12 | | 4n=2004 | | 700-9.5x=4.65 | | -4=t+2•16 | | 6x+-16=4 | | y/4+3=-13 | | -n+15=-87 | | -3y=1/6 | | 6=24-9x | | (y+2)/1=3.1 | | 2(x-6)+3x=5x+6 | | 1/2+18=1/4x+54 | | 1/3x-3/21/2=4/5 | | 12-a=6 | | 936=9(t-831) | | 4=31.7-3x | | 1/2=r+7/12 | | 1/2+18=x | | 2x/3+9=1/2 | | 6=4.9t^2 |

Equations solver categories