If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)x+(1/5)=13
We move all terms to the left:
(1/2)x+(1/5)-(13)=0
Domain of the equation: 2)x!=0determiningTheFunctionDomain (1/2)x-13+(1/5)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x-13+(+1/5)=0
We multiply parentheses
x^2-13+(+1/5)=0
We get rid of parentheses
x^2-13+1/5=0
We multiply all the terms by the denominator
x^2*5+1-13*5=0
We add all the numbers together, and all the variables
x^2*5-64=0
Wy multiply elements
5x^2-64=0
a = 5; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·5·(-64)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*5}=\frac{0-16\sqrt{5}}{10} =-\frac{16\sqrt{5}}{10} =-\frac{8\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*5}=\frac{0+16\sqrt{5}}{10} =\frac{16\sqrt{5}}{10} =\frac{8\sqrt{5}}{5} $
| 23-2q=11 | | r/6+43=51 | | x+5=5x-4 | | 8(d-84)=40 | | 1x=125 | | 9p-29=11+p | | 3x-5*0=9 | | 81y4=(9y)(9y4) | | 3x-5-1=9 | | 15=n/3+12 | | 17=2(m-15) | | 100/x=-4 | | 2(m-15)=143 | | v/3-3.2=-10.7 | | x-91=-15 | | w/5-4=15 | | r/2-6=4 | | 2m-15=143 | | 8x+10=-126 | | 8x+10=-125 | | 7x2+6x+2=0 | | (h+6)h-4)=0 | | 1/2-2x+1=13/2 | | -16x^2+70x-50=0 | | (12+x)×6=90 | | 6u-9u=6(-2) | | (2(x-3)x0.5)-0.333=0 | | -.0241x^2+x+5.5-16=0 | | 2(x-3)/2-1/3=0 | | 38·(45·57)=(s·45)·57 | | 28+23=h+28 | | 2+10x=x-7 |