(1/2)15x=205

Simple and best practice solution for (1/2)15x=205 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)15x=205 equation:



(1/2)15x=205
We move all terms to the left:
(1/2)15x-(205)=0
Domain of the equation: 2)15x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)15x-205=0
We multiply parentheses
15x^2-205=0
a = 15; b = 0; c = -205;
Δ = b2-4ac
Δ = 02-4·15·(-205)
Δ = 12300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12300}=\sqrt{100*123}=\sqrt{100}*\sqrt{123}=10\sqrt{123}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{123}}{2*15}=\frac{0-10\sqrt{123}}{30} =-\frac{10\sqrt{123}}{30} =-\frac{\sqrt{123}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{123}}{2*15}=\frac{0+10\sqrt{123}}{30} =\frac{10\sqrt{123}}{30} =\frac{\sqrt{123}}{3} $

See similar equations:

| -3x-12=-13 | | -4(8+y)=8 | | 5x-3+x=19 | | 3(2x+3)-3x+3=5 | | (8x)=3x+30 | | .25n+n=40 | | 14=10+6c | | 3b-3b=-35 | | p2=0.8 | | 1/2f+6=2 | | 12m=42.60 | | 11y–32=7y | | 2a–3=–4 | | 2x+2x-22=90 | | 2g-6=12 | | 9x+11=15x-31 | | 9x+11+15x-31=60 | | 20-7x=41 | | 9x+11+15x-31=90 | | 9x+11+15x-31=180 | | 11y-7,9+25y19,6-47y+6,6=1-11y | | 11u=63+4u | | 35t-3=73 | | 5y-85=180 | | -3x(-5+2)+x-3=39 | | 4s-12=180 | | 3u−3=6 | | -8=16-3x | | 3×(x+4)-2×(x+5)=12 | | 8x-13=8(10)-13 | | 150+15t=180 | | 180=2x+x-30 |

Equations solver categories