If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2=0.8
We move all terms to the left:
p2-(0.8)=0
We add all the numbers together, and all the variables
p^2-0.8=0
a = 1; b = 0; c = -0.8;
Δ = b2-4ac
Δ = 02-4·1·(-0.8)
Δ = 3.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{3.2}}{2*1}=\frac{0-\sqrt{3.2}}{2} =-\frac{\sqrt{}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{3.2}}{2*1}=\frac{0+\sqrt{3.2}}{2} =\frac{\sqrt{}}{2} $
| 1/2f+6=2 | | 12m=42.60 | | 11y–32=7y | | 2a–3=–4 | | 2x+2x-22=90 | | 2g-6=12 | | 9x+11=15x-31 | | 9x+11+15x-31=60 | | 20-7x=41 | | 9x+11+15x-31=90 | | 9x+11+15x-31=180 | | 11y-7,9+25y19,6-47y+6,6=1-11y | | 11u=63+4u | | 35t-3=73 | | 5y-85=180 | | -3x(-5+2)+x-3=39 | | 4s-12=180 | | 3u−3=6 | | -8=16-3x | | 3×(x+4)-2×(x+5)=12 | | 8x-13=8(10)-13 | | 150+15t=180 | | 180=2x+x-30 | | 5^x=124 | | 2x+142+2x+(3x+14)+(3x+14)=540 | | 5b-5=180 | | 2v+50=180 | | (18x+5)=(20x-7) | | 8.25=3/4w | | -14=3c+4 | | 16y+20=180 | | 2(u+3)=6u+18 |