(1/2)(7a+1)=18

Simple and best practice solution for (1/2)(7a+1)=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(7a+1)=18 equation:



(1/2)(7a+1)=18
We move all terms to the left:
(1/2)(7a+1)-(18)=0
Domain of the equation: 2)(7a+1)!=0
a∈R
We add all the numbers together, and all the variables
(+1/2)(7a+1)-18=0
We multiply parentheses ..
(+7a^2+1/2*1)-18=0
We multiply all the terms by the denominator
(+7a^2+1-18*2*1)=0
We get rid of parentheses
7a^2+1-18*2*1=0
We add all the numbers together, and all the variables
7a^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $

See similar equations:

| (x+20)=168 | | -8g+9+15g=4g-9 | | 3x(5)=x-8 | | 7+15x=71 | | 25b+5=3b+27 | | y+13/49=40 | | -1=-4-5x | | -3x7=-11 | | 2.2q-17.41+8.6q=15.22-14.3q | | 21x+42=44 | | 9x+3=9x+1 | | 12( | | 4=9w-18 | | 7=0.83p-8 | | T-y67*7=31 | | -2(4x-8)=80 | | 5(x-2)/3=-x* | | 1(-5x+4)+4x-5=-3 | | 6k-5=7k+12 | | x-2(x-3)=4x+6 | | -4(8g-5)+10g=10 | | x2=4/5 | | B19x-18=-19x+18 | | 12-5x=8+3x | | 1/5h+20h+2/3h=h | | 1(-4x+4)+4x-4=-3 | | 20+13b=14b | | 25x^+10x=1 | | a-2-10=3 | | 5x+1x+10=50 | | -(72-x)=97-12x | | 2(v-4)=4v+4-2(-2v-2) |

Equations solver categories