If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(6h-4)=-5h+1
We move all terms to the left:
(1/2)(6h-4)-(-5h+1)=0
Domain of the equation: 2)(6h-4)!=0We add all the numbers together, and all the variables
h∈R
(+1/2)(6h-4)-(-5h+1)=0
We get rid of parentheses
(+1/2)(6h-4)+5h-1=0
We multiply parentheses ..
(+6h^2+1/2*-4)+5h-1=0
We multiply all the terms by the denominator
(+6h^2+1+5h*2*-4)-1*2*-4)=0
We add all the numbers together, and all the variables
(+6h^2+1+5h*2*-4)=0
We get rid of parentheses
6h^2+5h*2*+1-4=0
We add all the numbers together, and all the variables
6h^2+5h*2*-3=0
Wy multiply elements
6h^2+10h^2-3=0
We add all the numbers together, and all the variables
16h^2-3=0
a = 16; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·16·(-3)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*16}=\frac{0-8\sqrt{3}}{32} =-\frac{8\sqrt{3}}{32} =-\frac{\sqrt{3}}{4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*16}=\frac{0+8\sqrt{3}}{32} =\frac{8\sqrt{3}}{32} =\frac{\sqrt{3}}{4} $
| 2p+8=10p+4927 | | 2(x)=x+23 | | -4(t-4)+4=4(t+3) | | 4x6=10x | | n+4/8=2 | | 240=8s-72 | | 1/4x-6=3/4x-8 | | 34+x=11+2x+35 | | 2(z-27)=z | | -1-5n=9 | | -4(t-4)+4=4t+3) | | 5y+7=9y+1 | | -16=-5(2)+b | | -4k+(5k+6)=-3k-39 | | 4x-9=3.5x-9= | | {21=4x-5x+10} | | 3(2x-5)=-(7x-13) | | y/5+3=-9 | | |(n)+1=2 | | -5x+(6x-8)=30 | | 9h+h+5h+-17h+-2h=-8 | | 2(w)=w+9 | | -3x-3=2(1-4) | | -264=-8(10x+3) | | 0.16x+0.9(x-3)=0.01(2x-2) | | 2(s-38)=s-9 | | 15=11x+1+3x | | -22=2+r+3r | | 5x-5+x=3x-1 | | 7x-8-3x=8+2x | | 19–h–h=–13 | | 5x+12=-3×+60 |