If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1+n)n=2000
We move all terms to the left:
(1+n)n-(2000)=0
We add all the numbers together, and all the variables
(n+1)n-2000=0
We multiply parentheses
n^2+n-2000=0
a = 1; b = 1; c = -2000;
Δ = b2-4ac
Δ = 12-4·1·(-2000)
Δ = 8001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8001}=\sqrt{9*889}=\sqrt{9}*\sqrt{889}=3\sqrt{889}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{889}}{2*1}=\frac{-1-3\sqrt{889}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{889}}{2*1}=\frac{-1+3\sqrt{889}}{2} $
| 4r+11=19-2r | | 3(4)y-28=16(4) | | n/2−7=18 | | -8x-2x=-40 | | n2−7=18 | | -2(3x-6)=-6x=5 | | 5(2x-8)-2=5(x-3) | | 2(x-5)=70 | | A+5b=7 | | 3x10(x+2)=13-7x | | 2x+6+90=140 | | 2x=6+90=140 | | 20=2y+3y | | 2x-2x=18 | | 0.333333333(p+3)=0.833333333(p-4) | | x+2|=10 | | -23=-3(-4b-3)-8(1+b | | 4(2x+3)9=(2x-2) | | H4(2x+3)=9=(2x-2) | | 14y^2-3y-2=0 | | 4(2x+3)=9=(2x-2) | | 14y2–3y–2=0 | | 3v^2+7v-10=0 | | 5n+19=3n+25 | | 14=96/x-2 | | 18-4xx=6 | | 4x+3(2x-3)=6x+27 | | -2=(4/3)(0)+b | | 9w-3=6(w+2) | | 3x–2=4-x | | 1/3(6+-6)=t-6/6 | | 0=(4/3)(-2)+b |