(1)/(3)k+80=(1)/(2)k+20

Simple and best practice solution for (1)/(3)k+80=(1)/(2)k+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(3)k+80=(1)/(2)k+20 equation:



(1)/(3)k+80=(1)/(2)k+20
We move all terms to the left:
(1)/(3)k+80-((1)/(2)k+20)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k+20)!=0
k∈R
We get rid of parentheses
1/3k-1/2k-20+80=0
We calculate fractions
2k/6k^2+(-3k)/6k^2-20+80=0
We add all the numbers together, and all the variables
2k/6k^2+(-3k)/6k^2+60=0
We multiply all the terms by the denominator
2k+(-3k)+60*6k^2=0
Wy multiply elements
360k^2+2k+(-3k)=0
We get rid of parentheses
360k^2+2k-3k=0
We add all the numbers together, and all the variables
360k^2-1k=0
a = 360; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·360·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*360}=\frac{0}{720} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*360}=\frac{2}{720} =1/360 $

See similar equations:

| |x|+(-5)=11 | | 15x+21=x | | 3(3x-2)=2x+16 | | 22+5y-3=180 | | 2x+8x+12=32 | | 5(-6x-5)-3=-118 | | 6.2v=74.4 | | b-63=-12 | | m+12=10 | | 5x-2=3+10 | | 4(x–3)=3(4+x) | | 3x+6+48=00 | | j/3=1.3 | | -3(2x-3)+x+4=−3(2x−3)+x+4=-27−27 | | 6−2x=6x−10x+8 | | 7x(2x)=35 | | 6−2x=6x−10x+8. | | 2x+4x+8+4x+12+10=110 | | 12+7x-2x=42 | | 2x+27=31 | | 100^x=1 | | 100-(1+10)=x | | x=2.5x+4.5 | | r+75=805 | | 100*(9+3)=x | | u+81=40 | | x=26+0.25/1 | | c+89=15 | | -28=5+6(t-8) | | 25=m-17 | | 56.25-30.00=x | | -35=g-81 |

Equations solver categories