If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1)/(3)k+80=(1)/(2)k+120
We move all terms to the left:
(1)/(3)k+80-((1)/(2)k+120)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k+120)!=0We get rid of parentheses
k∈R
1/3k-1/2k-120+80=0
We calculate fractions
2k/6k^2+(-3k)/6k^2-120+80=0
We add all the numbers together, and all the variables
2k/6k^2+(-3k)/6k^2-40=0
We multiply all the terms by the denominator
2k+(-3k)-40*6k^2=0
Wy multiply elements
-240k^2+2k+(-3k)=0
We get rid of parentheses
-240k^2+2k-3k=0
We add all the numbers together, and all the variables
-240k^2-1k=0
a = -240; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-240)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-240}=\frac{0}{-480} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-240}=\frac{2}{-480} =-1/240 $
| 14+7x=14x+2 | | 3x-14=5x+1 | | 328.32=9(.06m+26.90+2(26.90 | | 4x+34+3x+90=180 | | 6(x-7=910x | | 4(2x+3)=7(4x-4) | | 2(2x+3)=4(x–2) | | 34=2h | | 6t+30=90 | | 3x-14=X+17 | | 4x+34+90+3x=360 | | (2x)*2=3x-3/5 | | 59=d+37 | | 4(2x + 1) = 27 + 3(2x − 5) | | (2x)*2=3x-1/5 | | v-86=248 | | 105+5x+4+3x+4x-1=360 | | .52y+3.2y=20 | | -2/5y=22/15 | | 3x(3x)=45 | | 69=0.1d+61 | | -4b+14=b-7 | | 4-3m=25 | | 9x-9+2(2x+4)=-3(x+5) | | 5(2c+7)−3c=7(c+5) | | 8n+16.3=2.6 | | 5x+20°=180 | | 23=d | | 4.2x=1.75 | | 3x^-10=65 | | 6+5x−2x=9 | | –7+3v=6−3+8v |