(-4/3z+41)+z=57

Simple and best practice solution for (-4/3z+41)+z=57 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4/3z+41)+z=57 equation:



(-4/3z+41)+z=57
We move all terms to the left:
(-4/3z+41)+z-(57)=0
Domain of the equation: 3z+41)!=0
z∈R
We add all the numbers together, and all the variables
z+(-4/3z+41)-57=0
We get rid of parentheses
z-4/3z+41-57=0
We multiply all the terms by the denominator
z*3z+41*3z-57*3z-4=0
Wy multiply elements
3z^2+123z-171z-4=0
We add all the numbers together, and all the variables
3z^2-48z-4=0
a = 3; b = -48; c = -4;
Δ = b2-4ac
Δ = -482-4·3·(-4)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-28\sqrt{3}}{2*3}=\frac{48-28\sqrt{3}}{6} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+28\sqrt{3}}{2*3}=\frac{48+28\sqrt{3}}{6} $

See similar equations:

| 4y+3(1)=18 | | 4^x(2^(1-x))=9 | | 4^x2^(1-x)=9 | | 10x+1=3(3x+5) | | 4y+3(2)=18 | | 5(e-2)-2e=5-2e | | P=25/4t+100 | | 3a/2=9/14 | | 2a-21.4=a-2.5 | | 5(d-2)-d=5-d+15 | | P=25+25t | | 2a-3=+5 | | 2/5(x)=12 | | v-8=7v+8v-8 | | -5(y-7)=-9y+11 | | (4m-9)(m-6)=0 | | 2x+7=-103 | | 9-3c=9 | | 10y-8=54 | | 4+a=-4a+6a | | 6x-8+5x+2=104 | | (X+3)(3x^2-2x+1)=x | | 10/94=4/x | | (162-x)/11=13 | | 2x=44/5 | | x-3(x-8)=40 | | 2x+35=42 | | 56+n=97;= | | 14x+11=40 | | 8x-12.8=6x | | 6x-12x=7-12-24+2 | | 6(x+12)-7=4(3x-6)+2 |

Equations solver categories