(-3/4)(-x+2)=6

Simple and best practice solution for (-3/4)(-x+2)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3/4)(-x+2)=6 equation:



(-3/4)(-x+2)=6
We move all terms to the left:
(-3/4)(-x+2)-(6)=0
Domain of the equation: 4)(-x+2)!=0
x∈R
We add all the numbers together, and all the variables
(-3/4)(-1x+2)-6=0
We multiply parentheses ..
(+3x^2-3/4*2)-6=0
We multiply all the terms by the denominator
(+3x^2-3-6*4*2)=0
We get rid of parentheses
3x^2-3-6*4*2=0
We add all the numbers together, and all the variables
3x^2-51=0
a = 3; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·3·(-51)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{17}}{2*3}=\frac{0-6\sqrt{17}}{6} =-\frac{6\sqrt{17}}{6} =-\sqrt{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{17}}{2*3}=\frac{0+6\sqrt{17}}{6} =\frac{6\sqrt{17}}{6} =\sqrt{17} $

See similar equations:

| 2(3x+9)=-24+36 | | 6r1=8r-17 | | 4x-3(2x-5)=12-5x+3 | | x+x+x-42=180 | | m+5-7=-6 | | 4x-3(2x-5)=12-5x=3 | | -5h-30-3h=6 | | -21g-6=36 | | 3(8-2x)+40=34 | | .5t-3=3t+9 | | |m+5|-7=-6 | | 80+6x+6+180-15x+5=180 | | 4x-5=3x+10+x | | Y(6-3x)=24 | | 11x+28=5x+4 | | 10n2-20n=0 | | 3+7p=2p+13 | | 8-8m+2=24 | | X+8=30-x | | 39x-86=-9 | | 8(x+4)-5x=-29 | | 3z-9=30 | | 9p+5=5p-15 | | 4(9x+1)=10(2x-5) | | 2/9=17/6x | | -1/2-1/5v=-2/3 | | (5x+4)-(3x-1)=15 | | 4(9x+1=10(2x-5) | | -2/5x=8/36 | | 4(x-3)-17=9x-2(x-8) | | 146=-2-6(-2x-16) | | -3/2-2/3y=-9/7 |

Equations solver categories