If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-20n=0
a = 10; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·10·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*10}=\frac{0}{20} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*10}=\frac{40}{20} =2 $
| 3+7p=2p+13 | | 8-8m+2=24 | | X+8=30-x | | 39x-86=-9 | | 8(x+4)-5x=-29 | | 3z-9=30 | | 9p+5=5p-15 | | 4(9x+1)=10(2x-5) | | 2/9=17/6x | | -1/2-1/5v=-2/3 | | (5x+4)-(3x-1)=15 | | 4(9x+1=10(2x-5) | | -2/5x=8/36 | | 4(x-3)-17=9x-2(x-8) | | 146=-2-6(-2x-16) | | -3/2-2/3y=-9/7 | | 3x2+24x+53=0 | | -6b^2+4b-130=0 | | 8(4-2v)-8v=176 | | 18x^2+8x-19=0 | | 9y-54=36+4y | | 2/3+r=8 | | 42/50=x/375 | | -2n-4=34 | | (42/50)=(x/375) | | 15v+2.3=114.3 | | 8x+2-4x=5+2x+3 | | 15(10x−6x)+9(9−18x)=546 | | -1/2+3=x-7 | | -6(w+2)=4w-2+2(4w+1) | | 24n=3n=5.52 | | 12u=28 |