(-2x-6)+(1/4x-3)+90=180

Simple and best practice solution for (-2x-6)+(1/4x-3)+90=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2x-6)+(1/4x-3)+90=180 equation:



(-2x-6)+(1/4x-3)+90=180
We move all terms to the left:
(-2x-6)+(1/4x-3)+90-(180)=0
Domain of the equation: 4x-3)!=0
x∈R
We add all the numbers together, and all the variables
(-2x-6)+(1/4x-3)-90=0
We get rid of parentheses
-2x+1/4x-6-3-90=0
We multiply all the terms by the denominator
-2x*4x-6*4x-3*4x-90*4x+1=0
Wy multiply elements
-8x^2-24x-12x-360x+1=0
We add all the numbers together, and all the variables
-8x^2-396x+1=0
a = -8; b = -396; c = +1;
Δ = b2-4ac
Δ = -3962-4·(-8)·1
Δ = 156848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156848}=\sqrt{16*9803}=\sqrt{16}*\sqrt{9803}=4\sqrt{9803}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-4\sqrt{9803}}{2*-8}=\frac{396-4\sqrt{9803}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+4\sqrt{9803}}{2*-8}=\frac{396+4\sqrt{9803}}{-16} $

See similar equations:

| 4x+7=5x-70 | | 4=5+d | | M1=(5x-18)° | | Y=-3|3x-3|+1 | | 5+7f=33 | | Y+3/4/2y-1/3=-6/5 | | 7x-4=7x+1 | | |2p^+13p+20=0| | | 13d=-4 | | 8y+4+68=180 | | 2p^+13p+20=0 | | 8r^2-8=0 | | 8r^2-8=- | | 70=3t+16t2 | | -1/2(a+16)=-9 | | 1+36x^-2=0 | | -7+27y+23=16 | | x+√x=12 | | −2x+7(0)=−21 | | -16b=6 | | 1+36(x^-2)=0 | | 3=z²+22z+7 | | m4=6=2 | | x-5=64 | | 2(-4h-13)=49-57h | | 2(4t-6)=20t+7 | | 8t-12=20t+7 | | -.56x+0.26x=6.9 | | 6x+3/8=7x+1/8 | | 50=8+7k | | 2y=10-6 | | 35=-6(4f-2) |

Equations solver categories