(-1/2)n+5=-19

Simple and best practice solution for (-1/2)n+5=-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/2)n+5=-19 equation:



(-1/2)n+5=-19
We move all terms to the left:
(-1/2)n+5-(-19)=0
Domain of the equation: 2)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(-1/2)n+24=0
We multiply parentheses
-1n^2+24=0
a = -1; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-1)·24
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-1}=\frac{0-4\sqrt{6}}{-2} =-\frac{4\sqrt{6}}{-2} =-\frac{2\sqrt{6}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-1}=\frac{0+4\sqrt{6}}{-2} =\frac{4\sqrt{6}}{-2} =\frac{2\sqrt{6}}{-1} $

See similar equations:

| 3x+6+3x+22+7x+11=180 | | 9x/9=10 | | x^2=18x+56=0 | | 8(3w+8)÷5=-2 | | x^2=18+56=0 | | 5(x-4)-3(x+2)=(x-8) | | x^2+18=56=0 | | 43/d=13/38 | | x^2=18=56=0 | | -7(2f+2)=14 | | x×x-5x+4=0 | | 5(11x-5)=48 | | 90-z=2z | | 2=1-q | | 5/3x=340 | | 8.w=72 | | 19=3(w-14)+4 | | 36=4x+4(x-3) | | 19=(w-14)+4 | | 32=4(u+2)-8u | | 3(3v-1)-5v=33-2v | | 4(v-6)+3v=-17 | | 3-5b-6b=3 | | 3x+3-1+4=180 | | -7+8(-2x-6)=3x+4 | | 8(x-2)=-4x=56 | | 30+5x=60+2x | | 3(3s+9)=156 | | 2a+6=-a-15 | | 2x+5+8x+5=18- | | 98x^-2=2 | | 13+5x=-4(8-5x) |

Equations solver categories