If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((6x-8)(x+4))/x-8=0
Domain of the equation: x!=0We multiply parentheses ..
x∈R
((+6x^2+24x-8x-32))/x-8=0
We multiply all the terms by the denominator
((+6x^2+24x-8x-32))-8*x=0
We calculate terms in parentheses: +((+6x^2+24x-8x-32)), so:We add all the numbers together, and all the variables
(+6x^2+24x-8x-32)
We get rid of parentheses
6x^2+24x-8x-32
We add all the numbers together, and all the variables
6x^2+16x-32
Back to the equation:
+(6x^2+16x-32)
-8x+(6x^2+16x-32)=0
We get rid of parentheses
6x^2-8x+16x-32=0
We add all the numbers together, and all the variables
6x^2+8x-32=0
a = 6; b = 8; c = -32;
Δ = b2-4ac
Δ = 82-4·6·(-32)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{13}}{2*6}=\frac{-8-8\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{13}}{2*6}=\frac{-8+8\sqrt{13}}{12} $
| 5(x-3)^2+38=2 | | 600+8x=150000 | | -6x+8=-52 | | 8x-9=-(x-2) | | 350+10.50x=150000 | | 56÷(-14)=n | | x^2-20x+100=8 | | 2^x+3*2*2^x=28 | | z^2-3z=22.75 | | 12g=12(1.5g−1)+11 | | 0=4.9x^2-10x+70 | | 63x^2+100x+32=0 | | x/2+16=2 | | b^2-5b= | | 4m=3m=+3 | | 0=4.9x^2-9.8x+70 | | x/4+6=22 | | 2c-5-9c+4=8c+5 | | -(5y+2)-(4y-3)=-4 | | 7+x=13+4 | | 5(6-3b)=6(9-2b) | | 2x=x50 | | x/5+23=34 | | 7a+3=2a-5 | | 20x2+11x-3=0 | | 27/10=3/4n | | K=1/2x57^2 | | 9747=1/2m(57^2) | | 6b−2b+1=5b+2−b | | 650+88*m=112*m | | x/7+7=21 | | 23+3x=56 |