If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+11x-3=0
a = 20; b = 11; c = -3;
Δ = b2-4ac
Δ = 112-4·20·(-3)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*20}=\frac{-30}{40} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*20}=\frac{8}{40} =1/5 $
| 27/10=3/4n | | K=1/2x57^2 | | 9747=1/2m(57^2) | | 6b−2b+1=5b+2−b | | 650+88*m=112*m | | x/7+7=21 | | 23+3x=56 | | 4x−2+x=−2+2x | | 4(3x-5)=3(5x-9) | | x^2-23x+132= | | 3f=36 | | 1/4(12m+8)=5m+6 | | 2^3x=0.25 | | (x+2)/7=12 | | |5x+1|=|7x+3| | | 17.69=3g+3.95 | | 8-(3e-8)-7=11-(e-6) | | 7+78x=52+23 | | 10x+5000=12x | | 41.69=9g+3.98 | | (8-n)^2+13=23 | | 3a-15=2a-6 | | 3(6p-1=11p-45 | | |4x+7|+9=8 | | -9-m=7 | | (3x)-5=24 | | -4(x-3)=2x+10 | | 8x-7=-95 | | 7x2+3x3+4=1 | | 15-3×a=2 | | 64+76+k=280 | | 6x+3=-5+4x+20 |