If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((3+b)(3+b))-2b=39
We move all terms to the left:
((3+b)(3+b))-2b-(39)=0
We add all the numbers together, and all the variables
((b+3)(b+3))-2b-39=0
We add all the numbers together, and all the variables
-2b+((b+3)(b+3))-39=0
We multiply parentheses ..
((+b^2+3b+3b+9))-2b-39=0
We calculate terms in parentheses: +((+b^2+3b+3b+9)), so:We add all the numbers together, and all the variables
(+b^2+3b+3b+9)
We get rid of parentheses
b^2+3b+3b+9
We add all the numbers together, and all the variables
b^2+6b+9
Back to the equation:
+(b^2+6b+9)
-2b+(b^2+6b+9)-39=0
We get rid of parentheses
b^2-2b+6b+9-39=0
We add all the numbers together, and all the variables
b^2+4b-30=0
a = 1; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·1·(-30)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{34}}{2*1}=\frac{-4-2\sqrt{34}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{34}}{2*1}=\frac{-4+2\sqrt{34}}{2} $
| 1.2=x+2.3 | | -7+2x=-7x+2(x-1) | | D=7/6(m-5) | | 4/3x=-28 | | -3=b-8 | | y-8=43 | | 2/3(n-1)=4+n | | 1.75+2y=4 | | 1.5x+6=12 | | 8-6z=13-(7z+5) | | (6x/8+9=-2x=8 | | -3+x/4=5 | | x+(x+5)=(x+7) | | -3(1-8r)=-3+4r | | 2πr=C | | 2x-7=7x+9 | | n.2-2=7 | | (6x-13)+(9x+27)=15x+14 | | 4(-3+b)=24 | | 6x-35=19+4x-20 | | 1/5(n-3)=3/4 | | 0.2(x-3)-4(2X-3)=0.9 | | 5/6r=3/54 | | 25x-8=40x-1 | | 2-7n^2=-49 | | 38•y=532 | | -3(8-4m)=12+3m | | 4x-8x-7x=-2-53 | | (8t+30)+(-2t-15)=-22 | | 7(8-8x)-3x=-298 | | q+0.7=-0.9 | | 1.2+7.5m=60.9 |