If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+24X-280=0
a = 1; b = 24; c = -280;
Δ = b2-4ac
Δ = 242-4·1·(-280)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{106}}{2*1}=\frac{-24-4\sqrt{106}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{106}}{2*1}=\frac{-24+4\sqrt{106}}{2} $
| 3x-50=6x-70 | | -3+6(7+4m)=12-3m | | n+4/7=9 | | 17x+4(3x+7)=-16 | | 28-7x=7(2x+7) | | -9-6x=-(6x+3)-6x | | 44x=44-33 | | k+4(-4+3k)=6k+26 | | 28+1/3+(30-x)=180 | | 21+7v=6(-2v-6) | | (4x-6)+(2x+16)=180 | | 4x^2-75=-25 | | 7x=70-54 | | -4x-11+6x+21=4 | | 7/10+h=9/10 | | 7+7b-2b=11+6b | | 10/x=90 | | 16x^2-200x+16=0 | | 11-7n=-66 | | -6-5p+5p=1+p | | 3600=2/3*(x+x+900) | | 7x-1=4x+19 | | -2n+6=-3n-n | | |-4a+20|=10 | | 8x-30=5x+10 | | 3x+15+x+10+103=180 | | 15(8-x)=200 | | -4m+4-4-14=-8-6m | | 15(-x)=200 | | X+5+z=180 | | 12.5=5(v) | | 4/x-4/x+2=1 |