2+x(x-6)=x-3(4-x)

Simple and best practice solution for 2+x(x-6)=x-3(4-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+x(x-6)=x-3(4-x) equation:



2+x(x-6)=x-3(4-x)
We move all terms to the left:
2+x(x-6)-(x-3(4-x))=0
We add all the numbers together, and all the variables
x(x-6)-(x-3(-1x+4))+2=0
We multiply parentheses
x^2-6x-(x-3(-1x+4))+2=0
We calculate terms in parentheses: -(x-3(-1x+4)), so:
x-3(-1x+4)
We multiply parentheses
x+3x-12
We add all the numbers together, and all the variables
4x-12
Back to the equation:
-(4x-12)
We get rid of parentheses
x^2-6x-4x+12+2=0
We add all the numbers together, and all the variables
x^2-10x+14=0
a = 1; b = -10; c = +14;
Δ = b2-4ac
Δ = -102-4·1·14
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{11}}{2*1}=\frac{10-2\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{11}}{2*1}=\frac{10+2\sqrt{11}}{2} $

See similar equations:

| m^2+3m+7=0 | | 1x^2+10x-560=0 | | 37+a+25=40 | | 4d+5d+5d-13d=13 | | 6-2=5x-9x+6 | | 3•x+1=8x-12 | | 11h-5h-3h+h=4 | | 2b^2-5=101 | | x^=256 | | 7n+3n+n-10n+2=20 | | 4.5g+3=2.8g+11 | | x+13=3x-1=6x-22 | | 20q-12q+q=18 | | Y^2-70y+1225=0 | | 16(3x-3)=-18x(x+10) | | 0,25x+3=x | | 2/2a-1=3/5a-10 | | 17g-6g-10g=20 | | 7p+7=p-11 | | 14w-13w+2w-w-w=19 | | -7=11/77z | | q+q+3q=10 | | 7s-9s+-11s=-8 | | 6(4x-2)=4x | | 11t-8t-2t+3t-3t=7 | | 500=400(1+r(5)) | | 25=6y-11 | | 2r+1=5r-10 | | 500=400(1+r5) | | 800/6x=1000/10x | | 10-5r=2r | | r^2-20r+24=0 |

Equations solver categories