16(3x-3)=-18x(x+10)

Simple and best practice solution for 16(3x-3)=-18x(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16(3x-3)=-18x(x+10) equation:



16(3x-3)=-18x(x+10)
We move all terms to the left:
16(3x-3)-(-18x(x+10))=0
We multiply parentheses
48x-(-18x(x+10))-48=0
We calculate terms in parentheses: -(-18x(x+10)), so:
-18x(x+10)
We multiply parentheses
-18x^2-180x
Back to the equation:
-(-18x^2-180x)
We get rid of parentheses
18x^2+180x+48x-48=0
We add all the numbers together, and all the variables
18x^2+228x-48=0
a = 18; b = 228; c = -48;
Δ = b2-4ac
Δ = 2282-4·18·(-48)
Δ = 55440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{55440}=\sqrt{144*385}=\sqrt{144}*\sqrt{385}=12\sqrt{385}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(228)-12\sqrt{385}}{2*18}=\frac{-228-12\sqrt{385}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(228)+12\sqrt{385}}{2*18}=\frac{-228+12\sqrt{385}}{36} $

See similar equations:

| 0,25x+3=x | | 2/2a-1=3/5a-10 | | 17g-6g-10g=20 | | 7p+7=p-11 | | 14w-13w+2w-w-w=19 | | -7=11/77z | | q+q+3q=10 | | 7s-9s+-11s=-8 | | 6(4x-2)=4x | | 11t-8t-2t+3t-3t=7 | | 500=400(1+r(5)) | | 25=6y-11 | | 2r+1=5r-10 | | 500=400(1+r5) | | 800/6x=1000/10x | | 10-5r=2r | | r^2-20r+24=0 | | u-u+u=14 | | 5(2x+1)=2(5x-2) | | 20t-3t+-10t+-5t=-6 | | 21=80n | | 5(2x+1)=2(5x-2 | | 54x^2-45x+200=0 | | 4j-2j+4j+j-4j=15 | | 3|2x+1|=45 | | 2/3+x=7/3x-2 | | 7x+3=3-7x | | 12t-4t+5t-9t=12 | | 6.00x+0.75=9.00+0.55 | | 8w-2=-(12w+6) | | 6p+3p-7p=4 | | 4j-2j+4j-4j=20 |

Equations solver categories